UNCLASSIFIED

0410149

DEFENSE DOCUMENTATION CENTER

FOR

SCIENTIFIC AND TECHNICAL INFORMATION

CAMERON STATION, ALEXANDRIA, VIRGINIA

UNCLASSIFIED




NOTICE: When govermnment or other drawings, speci-
ficatlions or other data are used for any purpose
other than in connection with a definitely related
government procurement operstion, the U. S.
Government, thereby incurs no responsibility, nor any
obligation whatsocever; and the fact tha* the Govern-
ment may have formulated, furnished, or ln any way
supplied the said drawings, specifications, or other
data 1s not to be regarded by implication or other-
vise as 1n any mmnner licensing the holdexr or any
other person or corporation, or conveying any rights
or permission to manufacture, use or sell any
patented invention that may ir any way be related
thereto.




mewey BN ESMDY MGNhy 20 MW mmww e

410149

Y

bl oY / :;’x!“'*.!\
=0BY Uity

R r\‘(‘“ -
CATALOU =L

A
]
§
i

.

T3
e

ANTENNA LABORATORY
Technical Report No. 67

PLICATION OF CROSS-CORRELATION TECHNIQUES
TO LINEAR ANTENNA ARRAYS

by
ROBERT H. MacPHIE

Contract No. AF33(657)-10474
Hiizh Element Number 62405484
760 D-Project 6278, Task 6278-01

March 1963

Sponsorad by
AERCNAUTICAL 3YSTEMS DIVISION
WRIGHT-PATTERSON AIR FORCE BASE, OHIO
Project Engineer — James Rippin — ASRNCF-3

ELECTRICAL ENGINEERING DEPARTMENT
ENGINEERING EXPERIMENT STATION
UNIVERSITY OF ILLINOIS
URBANA, ILLINOIS




Antenna Laboratory

Technical Report No, 67

APPLICATION OF CROSS~CORRELATION TECHNIQUES TO LINEAR ANTENNA ARRAYS

by

Robert H, MacPhie

Contract No, AF33(657)-10474
Hitch Element Number 62405484
760 D-Projecct 6278, Task 6278-01

March 1963

Sponscored by
AERONAUTICAL SYSTEMS DIVISION
WRIGHT-PATTERSON AIR FORCE BASE, OHIO

Project Engineer - James Rippin - ASRNCF-3

Electrical Engineering Research Laboratory
Engineering Experiment Station
University of Illinois
Urbana, Illinois



ABSTRACT

This thesis is concerned with the application of cross-correlation
techniques to linear antenna arrays, The basic cross-correlation system,
which is considered, consists of two linear receiving arrays excited by a
distribution of remote radio sources, The terminal voltage of each array is
passed through a narrow~band RF filter and the two resulting signals are cross-
correlated., It is demonstrated that this system can measure the mutual

coherence function of the source distribution. To do this the patterns of

the two antennas must be scanned independently, A Fourier analysis shows

that the c¢ross-correlation system's output is a filtered version of the mutual

coherence function, From this output a three-dimensional principal solution

can be deduced; it is a generalization of the one-dimensional principal
solution given by Bracewell and Roberts in connection with radio astronomy,

In addition to cross-correlating the voltages obtained from two distinct
arrays one can nerform a cross-correlation of signals obtained from one of the
arrays, By dividing the signal from each element into two parts (with
predetermined weighting), and by combinirg additively each set of signals, one
obtains two output voltages from what are effectively two coincident arrays,.
These signals are then cross-correlated in the usual fashion, A similar cross-
correlation can be performed on the voltages obtained from the other array of the
system, Finally, 2o fourth cross-correlation function results when the signals of

“the two arrays are combined in reverse order and it is the complex conjugate of
the original cross-correlation function, These four distinct outputs are the

elements of the 2 x 2 correlation matrix of the system, * Fourier analysis of

the correlationr matrix leads to a more general principal solution for the system

as a whole which yields considerably more information about the source
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1, INTRODUCTION

The concept of correlation has been used to advantage for many years in
various branches cf mathematical science., It is basically a statistical concept
and such well-known statisticians as Karl Pearsonl and A, A. Chuprov2 have
employed it extensively in their work. For example, Pearson defined the
X

correlation coefficient of two sets of numbers X_ X X

n’ Tentl? 7770772 =12 Tn?
and Y o Yopeprooce » Ypu12 Yy to be
n
i§~n xi?yi
r o= —p —
e (x)? Az (v)?
i=-n i=-n

which is the cosine of the angle in 2n+l-space between the two vectors X and Y.
If the elements of X and Y are samples of a time sequence, it is of

interest to obtain a correiation coefficient between the two sequences

when one of them is shifted in time, time being represented by the

index of the correlated data. Hence we can write

lim 1 n

kK~ n-»w 2n+1 1?_11 *2 Y5k,

If the values X and Y are complex, we modify the above expression as

follows

n

*
L xXp ¥g-k
-

_ Iim 1
'k T n—>®  2n+l




where the superscript * indicates the complex conjugate of the quantity,

The above expression, as a function of the index k, is the cross-correlation
between the two time series X ana Y. It is a simple step to the generalization
of these discrete time series to continuous ones and ihe resulting cross-

correlation function for the continuous case is

T
lim 1 *
TY = ol x(t t-T) dt
R(T) T ~—» 0 2T () y ( )
-T

where T is the time delay of one function relative to the other. Norbert
WienerB’4 has made a thorough study of stationary time series and has shown
that the methods of Fourier analysis can be carried over into the domain

of such functions in spite of their statistical nature,

In the case of antennas the time series represent signals which
originate from remote radio sources distributed in various directions.
Consequently the cross-correlation function of a pair of signals should
now be written as

T
V(t,u) V (t-T,v) dt .
-T
There are now two additional variablgs; u and v, which represent the
directions from which the signals originate,.

There is a considerable literature on the subject of such spatio-
temporal cross-correlation functions or mutual coherence functions5 as
they are usually called, most of it having originated in optical studies.
The mutual coherence function of two light disturbances is analogous to

the cross-correlation function of two voltages. Complete correlation and



zero correlation correspond to coherence and incoherence respectively.

More generally one speaks of partial coherence. Eistorically, the theory
5 .

of partial coherence, according to Wolf |, dates Lack to Verdeta. More

7 8
recent contributors have been Von Laue , Van Cittert , Zernikeg, Wolflo’ll’lz,

Blanc-Lapierre and Dumontetl3, Beranl4, and Parrentls’ls. Although developed
primarily to describe optical phenomena, the theory of partial coherence can
also be used to describe the correlation properties of radio fields.

It is the role of the receiving antenna to act as a device which responds
to the fields from the remote radio sources. In many practical cases the
antenna consists of a number of smaller elementary antennas, which are
located on a straight line in space. Only such composite antennas, called
linear arrays, will be considered in this thesis, They were chosen not only
because they are widely used but because they lend themselves readily to
mathematical analysis., In this connection the concept of the linear
antenna array as a filter of spatial frequencies17 has become quite
widespread in recent years. The definitive paper on the subject, by
Bracewell and Robertsia, appeared in 1954 in connection with radio
astronomy. A remote source distribution (e.g., the extraterrestrial radio
sources), can be analyied as a function of direction by Fourier techniques
to yield a spectrum of spatiai frequency components. One can show that a

finite antenna acts as a low-pass spatial frequency filter. In the time

domain there is usually a narrow-band RF filter associated with the

antenna. Thus the antenna can be thought of as a spatio-temporal filter

of the incoming radio signals,
The basic cross-correlation antenna system consists of two antennas

whose terminal voltages are cross-correlated. There are several techniques



9’20. The first practical example of such a

to do this electricallyl
system appears to have been the Mill's Cross21 which consists of two long
arrays intersecting at right angles. When the array voltages are cross-
correlated with T = 0, the power pattern of the system is the product of the
two field strength patterns of the arrays. This product pattern is
practically zero except in the region where the faneshaped beams of the two
arrays intersect at right angles. This produces a pencil beam which is the
same as that of the field strength pattern of a rectangular planar antenmna
whose dimensions are given by the lengths of the two arrays. Ancther well
known example of this type of system is the Compound Interferometer22 in
which a uniformly weighted linear aperture of length L is placed adjacent
to a simple.two—element interferometer of the same length, The cross-
correlation output (again with T = 0) yields a product pattern which is
the same as the field strength pattern of a uniformly weighted linear aﬁerture
of length 4L. Both of these systems are used in radio astronomy.

Taking inspiration from the success in thig field, many workers have
extended the use of_cross—correlation techniques to radic direction finding,
radar, and_general communication antenna systems. Some of these

24,25

, Berman and Clayz6 Drane and

32,33,34
3

contributors are: Arsac23, Barber

Parrent27’28,Hanbury Brown and Twiss"'g’30

7
Pedinoff and Ksienski®>, Price®°, Welsby and Tucker White, Ball and

H

31
» Linder3 , MacPhie

38 9
Deckett , and Young3 . Since some of the above lnvestigators deal with
single and multiple products of antenna voltages the result ing outputs no
longer are related to inputs by the law of superposition. Consequently, the
1

generic terms "'nonlinear antenna systems' or "data processing antenna systems'

have become associated with these various schemes.



In this thesis s general theory of mapping the mutual coherence function,
T(T,u,v), of a distribution of remote radio sources is presented for the
first time. Previous workers considered only the case of incohereat
sources'® and zero time shift (T=0). It will be shown that T(T,u,v) can
be measured with a correlation antenna system whose two linear arrays are

scanned independently. Four distinect cutputs from the system are obtained.

These four correlation functions are the elements of the correlation matrix

of the system, A three~dimensional Fouriler analysis shows that each of the
syetam outputs is a filtered version of the mutual coherence function of

the source distribution. The analysis 1s for a partially coherent
distribution, but the limiting cases of complete coherence and incoherence
are considered and are shown to give rise to special types of system outputs.
Consequently, if one or the other of these types of outputs is observed in
practice, one can infer that the source distribuvion is completely coherent
or incoherent as the case may be, The problem of taking a finite time.
average in measuring the correlation of signals is also considered.

It is shown that when cne compares crossg~correlation with conventional
antenna systems the comparison should be made between the cross-correlated
output of the former and the square-law detected output of the latter system,
Indeed 1t is shown that the square~law detected output is a degenerate case
of the correlation output. An example of the improvement obtainable by
uging the cross-correlation system is given for the case of the optimum
Dolph~Chebyshev array deaign4o.

The generalization of a two-antenna correlation system to one containing
N antennas 1is analyzed., It is shown that such a system yields information

about the higher order moments of the temporal probability distribution



of the sources. The methods of Fourier analysis used in “he single

correlation case can be generalized to more dimensions in the multiple

correlation case,

Finally, a new type of radar system employing cross-correlation is

described and analyzed in detail. Just as a cross-correlation receiving
system employs two antennas, the radar system uses two antennas for both
transmitting and receiving, four antennas in all. It is shown that such
a system has distinct advantages over conventional systems employing a
single antenna. An improved Dolph-Chebyshev design becomes possible

and interference noise can be suppressed. The system could also be

used to determine possible correlation between the returns from various

targets,



2. LINEAR ARRAY THEORY

A linear array consists of a number of elementary antennas which are
colinear, i.e,, are located on a straight line in space. 1If, as is customary,
the array elements are identical, then the array's radiation pattern is
factorable; it is the product of the element pattern and the pattern of the
array when iits elements are replaced by isotropic antennas., Consequently
in linear array theory we need consider only arrays of isoifropic antennas
knowing that for any specific type of element, e.g., a half-wave dipole,
we can obtain the actual array pattern by rnultiplying the elemefit
pattern by the pattérn of the isotropic array. We should also note
that the polarization response of the array is the same as that of its
elements. Thus by removing the element factor we are reducing linear antenna
array thecory from a vector to a scalar formulation.

If the eclements of an array of finite length are increased in number
without 1limit and the element spacing approaches zero, we obtain a
"continuous array', as opposed to the discrete array mentioned above. In
what follows we will refer to both continuous and discrete arrays, whose

clements are located on a straight line, simply as linear antennas,

Now as is shown in Figure 1, two liuear antennas (with isotropic elements)

are localed on the x axis of a convenient coordinaie system. One is of length LA

and the other, located a distance 2 to the right of the first, is of length LB.

It is well known that except for a constant factor, the far field patterns of the
41 . .
antennas operating at [requency @ are given by
o
L, /2
2/

A(u) = :é;f— a (x)ed Fax (1)
L /2
LA/
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and

LB/2 + 4

B(u) = 3%# b(x)e
/2 + !

dx (2)

where u = B sin 9,

B

phase constant,

0 = anglc measured from the normal to the antenna aperture,

X

I

aperture coordinate,
a(x) = antenna A's aperture weighting function,

b(x)

Il

antenna B!'s aperture weighting function,

Note that the time-harmonic far fields are represented by complex quantities

according to the usual convention, We will use this convention throughout the

thesis for both fields and voltages. However, in cases where two voltages are

being multiplied one must consider the product to be the product of two real

in any case such as this, the notation "Re....

quantities, The real part of the product of the corresponding complex

voltages is not the same as the product of the real voltages. Consequently,

will be -inserted . to describe

the operation precisely.

Since a(x) and b{x) are identically zero fof |x-|!>LA/2 ahd ]x.£|:>Lﬂ-/_'2 réspective ly,

it can be seen from Equations (1) and (2) that A{u) is the Fourier transform

of a(x), while B(u) is the Fourier transform uf b(x). Consequently we can use

-jugx

the shifting theorem to show that if for example, a(x) is changed to a(x) e 3
the pattern becomes
0
_ _ 1 ~Jjugx Jjux
Alu-u ) = = [a(x)e ]e dx , (3)
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The pattern can be shifted or scanned by introducing a progressive phase shift
of us = B sin es radians per meter across the aperture. This is called
electrical scanning and will be the only type considered in this thesis.*

It also follows that the inverse Fourier transforms of A(u) and B(v) are the

weighting functions

Jux

a(x) = 7;—% AG) e I gy (4)
-0
and
-]
b(y) = —J;’—-Tr' B(v) e IV dv, (5)
-0

It will be observed that these antennas are esgentially "one-dimensional"
since they are described by one-dimensional aperture and pattern functions.
In physical (three-dimensional) space the angle © = constant describes a cone
whose apex is 2t the origin and whose axis is the x axis. When the antenna
is receiving, all incident signals whose propagation vectors are parallel
to any generator of this cone are indistinguishable by the antenna. Their

phasor sum, as "seen" by the antenna, is taken as the field of "a source"

*Tt should be noted that in practice, electrical scanning is complicated by

a number of factors, For example, suppose the antenna is matched to the load
when its pattern is beamed in the broadside directinon (u = Q); then in order
to scan the pattern to the u = v direction, a progressive phase shift, which
of course changes the aperture's weighting function, must be introduced. This
will, in genersl, result ina mismatch between the antenna and the load. The
mutual impedance effects of the antenna elements also complicate the analysis
of electrical scanning, Thus in Equation {(3) we have hopefully assumed that
these impedance problems have been solved and we can perform an ideal scan of
the pattern in the u domain, However, when considered as a function of angle
€ the pattern becomes distorted when scanned



Bmononons e

11

in the € = constant direction. 1In addition, by thirking of 8 as thec propagation
vector'ﬁ, which indicates the direction as well as the frequency of the signals,
we see that u = B sin © is actually the three-dimensional scalar prcduct of i?
with a unit vector Q parallel to the antenna axis.

:

u = E . = B cos (1/2-6)

or

u=8sin 6, (6)

The two-dimensional counterparts of linear antennas are planar antennas whose
elements are located, for example, in the z = 0 plane of a cartesian coordinate
system. The one~dimensional Fourier analysis of linear antennas can be extended
tc these two-dimensional antennas with the transform coordinates being given by
X, ¥y, and u = B sin 0 cos @, v =08 sin € sin . In this case the propagation
vector can be represented as a point on a sphere whose coordinates are ﬁg9,¢0

and by analogy with the one-dimensional case we have

E) S

B sin 0 cos @,
(M

B sin © sin @ .,

x>

*

In Appendix A is a more detailed account of the relation between the three-
dimensional physical space and its projected counterparts in both one and two
dimensions,
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Admittedly, such antennas are of much greater practical value than linear
antennas. However the method of analysis is essentially the same for both
and for simplicity of notation we will restrict ourselves to the one-

dimensional case, Generalization to the planar antenna of the results

cbtained is quite straightforward,
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3. DESCRIPTION OF THE SQURCE DISTRIBUTION

In almost all cases of practical interest the exact nature of the
source distribution is unknown; if it were known exactly a priori, it
would never be necessary to build an antenna to measure it. However, we can
make some reasonable assumptions about the distribution which are deduced
from some of its known physical properties, Furthermore, the statistical
description,which proved so useful in communication theorys’?Jwill be used
here. The basic concepts of thés pype. of approachuare embodied in the

theory of partial coherence as developed by Born and Wolfsand Parrentls’le.

3.1 Assumptions

It will be assumed that the source distribution possesses the

following physical and statistical preoperties:

1) The sources are remote from the receiving antenna and fixed in
space during the observation,

2) The direction of "a source” is given by the single parameter
u =0 sin @,

3) In the time domain the sources are stationary; they emit random
signals whose statistical properties are invariant under a shift
of the time origin42

4) The sources are ergodic; the time averages of various quantities
are equivalent to their mathematical expectations or statistical
averages42‘

5) The signals emitted by the sources are described by zero-mean
complex random variables with statistically independent real and

imaginary parts.
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6) The signals from sources in different directions are not neces=
sarily statistically independent.

7) The statistics of the signals are gadssian43.

8) The signals are quasi-monochromatic. The

bandwidth 2 A @ ig much less than the carriex frequehcy ws.

The"abqve,propertiep constituie an.acceptable.description of many

soui'ces encountered by the antenna engineer. For example, remote

communication transmitters, radar targets, radio stars, and even earth

satellites, produce signals whose genersl description is given above.
Since the sources are remote, the field due to each is incident on

the antenna system in the form of a plane wave. The RF field at time t,

at the origin of the anteﬁna svstem (see figure 1), which is due to the

source in the u direction, can be written as

Jw t

S

e (t,u) =V (t,u) e (8)

where the complex scalar function, e (t,u), can be thought of as one of
the components of the electric field vector due to the remote source, i.e.,
the component to which the antenna elements respond. V (t,u) is the com-
plex modulation envelope of the carrier signal at frequency “B and is the
zero~mcan random variable with independent real and imaginary parts men-
tioned above. This signal contains the desired information about the
source. Avcordingly, letus -suppress the carrier factor in Equation (8) and

focus our attention on the coherence properties of V (t,u).
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3.2 Coherence Theory

- . 5
Following Born and Wolf , we define the complex degree of coherence
between the fields from the source in the u direction and the source in

the v direction?as

<V () V. (=T, v

Y (T,u_’v) = (9)
2 2
<\V (t,u)l > <\v (t,v)] >
where < f£(t) » denotes the time-avcrage of f{t), i.e.,
lim 1 T
< f(t) > = TS5 o0 -Z-T—- f{t)dt . (10)
One signal is delayed by T seconds relative to the other bcfcore their
%

Hermitian product is formed and time-averaged. The normalized form of
this average is Y (T,u,v) and it can be easily shown that

"Both u and v are independent running variables in the § sin g domain, i.e.,
we could write u = B sin § and v = sin § . They should not be confused
with the orthogonal coordinates u and v in the two-dimensional antenna

case.

Jw t
*

More specifically, Born and Wolf use the total complex phasor V(t,u)e’
rather than just the envelope V(t;u). Their compledeegree of cohewence
differs from Equation (9) by an RF phase factor ed%

2
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If |y (t,u,v)| = 0, for u # v, the two sources are completely
incoherent while if |y (T,u,v)}| - 1 they are completely coherent,
Note that y (T,u,v) is a function only of the diiference T, of the
time arguments of the two field phasors V (t,u) and V*(t—T,v). This
is a consequence of the stationary nature of the sources. Let us

define

T (T,u,v) =<V (t,u) V' (t=7,v) > (12)

%
to be the mutual coherence function of the source distribution .,
For T = 0 and u = v, this function is real and is proportional to the

average power radiated by the source in the u direction toward the

antenna, 1.,e it is a measure of the temperature brightness of the

7 *)
source,

In practice it is the temperature brightness of the two-dimensional
distribution of remote sources which we wish to measure., Appendix A
is devoted to a description of a planar array which can measure such a
distribution, The effect of the element pattern and of changing
variables from the (u,v) domain to the (0,¢) domain is considered,
Nevertheless, such an analysis is simply a generalization of the one-
dimensional case which for simplicity of notation we are considering in

the main body of this thesis,

Since we have assumed that all of the sources are remote, they must

*
Born and Wo&deefine the mutual coherence function as I‘(T,u,v) =
T (T,u,v) e’ o ,
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lie in the so~called visille range of the antennas, Consequently we

can write

vV (t,u) = 0, for lul > B,
vy (f,u,v) = 0, for lul > B or IV| > B, a3
and T (T,u,v) & 0, for |u‘ >pB or |u| > B,

44,45, 46

In the terminology of distribution theory we gay that v(T,u,v) and

T (T,u,v) have a finite support in the uv domain while V (t,u)'s

suppoertis finite in the u domain,

3.3 Fourier Analysis

3.3.1 Time Domain

Since V (t,u) is a sample function of a stationary random process itk

inverse Fourier transform in the time domain does not exist, 1.e,, v (t,u)
is not absolute-square integrable;
T—>00 T ’

However,the complex mutual coherence function, T (T,u,v),which may be

written as



is8

*
Clim . 1 fTv (t,u) V" (t-T,v)dt (15)
TMwv) = 1 e 27 27

does exist, This means that there is a finite average cross-power be-
tween the signals from the u and v direciions, as obeerved at the .antenna
system's origin,

Thus we define the cross-power spectral density or power spectrum

to be ;he}inmerseﬁFourierrtrahsfnrm:of:T-{I;ugv),tr: .

w -
- 1 P o
= = SRR U S

t (,u,v) mfoo T (T,u,v)e dv. (186)

It also follows that

) , e
1 R ENRE
— -t T
J-'E."'ﬂ_'f T (v

o0

T (T, u,V) = dw". (17)

3.3.2 Space Doméin

Because V (t,u), as a function of u, has a finite suppor.
(V (t,u) = 0 for |u| >3 ) and is square integrable, it is possible to
define its inverse Fourier transform in the space or spatial fre.. ancy

domain, Thus we let its spatial frequency spectrum at time t be



19

o0
v (t,x) = — f V(t,u)eJuxdu
27 -'=

g .
vit,weYau . (18)

H

The designation "spatial frequency spectrum’ is used as a term which is
analogous to "temporal frequency spectrum’" in the time domain,

Physically, v (tpy) is the complex envelope of the field which exists at a
point on the x axis which is y units from the origin (see Figure 1), This
field is the integral of all the plane waves from the remote sources
modified by the phase factor ejuy, On the other hand we can recover the

complex field due to the source in the u direction as follows

Vot = = f vit, e x| (19)
Jzﬂ A

Let us define

T (r,x,y) = < (t,%) v (t-T,y> (20)

to be the mutual coherence function between the field envelopes at the
points x and y. If we substitute Equation (18) into the above expression,

there results
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* -
1 fﬂ v ('l:,u)e'juxciuf[5 vV (t-T,v)e vad> (21)
2T 8

- B

T (7, x,y)

BB * 3 (ux-vy)
1 f Q(t, u) v (t-‘r,v> e dudv
22)
27 LR (

or

- aPBpB J(ux-vy)
f f ST(T,u,v)e dudv , (23)
B B

= 1
t (7,x,y) = o7

Thus for a given time delay T, the spatial frequency speectrim. -
of T(T,u,v) is given by the mutual coherence function %(T, X,y) as defined
by Bquation (23).

3.3.3 Combined Time and Space Domain

Using Equations (16) and (23) we can immediately define the combined

temporal and spatial spectrum.of T(‘ﬂ,-'(r,'v:} as " .

-3 (WTFuxsvy)

© B P
onn = sy [ [ [ T ardudv (24
CN7% % %

and of course the inverse is
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J (Wwrsux+vy)

1 o LB LB
T(T,u,v) = —% f f f tw,x,y)e duwdxdy . (25)
(2m) o 5 B

Note that the argument of the expcnential function in each transform is
fi#wT +ux -vy), The negative sign associated with vy occurs because the
mutual coherence functions are expetted values of a Hermitian product,
i,e

., the product of one complex function and the complex conjugate of

another, This taking of the conjugate gives rise to the negative sign as
can be seen in Equations (20) to (23).

3.4 Special Limiting Cases

3.4.1 The Coherent Limit

The 1limit of complete coherence between sources in the u and v direc-

. 1
tions has been defined by Parrent 5to mean that

y (t,u,v) = ] (26)

for all values of T. However, Parrent has shown that only a strictly
monochromatic source distribution will satisfy Equation (26); fThe mutual

coherence function of such g distribution can be written as

T (T,u,v) = V (u) V*(v) (27)
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where V (u) is a fixed amplitude and pﬁase factor associated with the
source in the u direction,

In practice one can. at béstr deal with qguasi-monochromatic signals
for which the power spectrum t (w,u,v) is practically zero except for
lml< A W where A @ <<< wo. In such a situation one defines a coherent

15
quasi-monochromatic source distribution to be one for which

T =V @ VW, o |v < E . (28)

The mutual cocherence function is independent of T (for T <<-§£; , and

sk
separable into the cartesian product of two functions V(u) and V (v)
which are complex conjugates, Since T (T,u,v) is separable for small T

it follows that the spatial frequency spectrum is alsc separable.

T (T,%x,y) = v (x) v*(y), for IT |<< %g- . (29)

Thus for small values of T, the coherent quasi-monochromatic distribution
behaves as one which is strictly monocromatic,

3.4.,2 The Incoherent Limit

Complete incoherence . between the sources in the u and v

directions is characterized by

T (T,u,v) =T (T,u,u) d(u-v) (30)

where D(u) 1is the Dirac delts.,
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The mutual coherence function is non-zero only when u=v, in which case

we obiain the sel f-coherence or autocorrelation function of the source

in the u direction, The spatial frequency spectrum of the incoherent

distribution is

_ 1 BB (ux-vy)
t (r,x,y) = Y f T (T,u,u) 8(u-vie dudv (31)
-3 76
or
— 1 ﬁ ,-ju(x—y)
t ('r,x-y) = 2_11_,[ T (7,u, u)e du , (32)
-

The spatial frequency spectrum for incoherent. sources is a function only

of the difference, x-y, of the spatial frequency coordinates, I1f we let

Xx-y = z we can define a one-~dimensional spatial frequency spectrum as

Jjuz

E (r,2) = 1 fﬁ T (T,u)e' © du (33)
1) 4
%

where

T (r,u) = it l,)

NEZD (34)

in the incoherent case, In addition, one can use Equation (12) to show



that T (o,u,u) and hence T (o,u) are real and non-negative functions of
u. Physically, this means that the average energy flow from the remote

sources 1s non-negative,

24
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4, THE GENERAL THEORY OF CROSS-CLRRELALION

Before turning our attention to the specific case of the two~antenna
cross~correlation system; we will consider the cross-correlation of two
arbitrary narrow-band RF signals., We will show that a complex cross-
correlation function is associated with these two real signals, Then we
will consider in some detail a practical RF cross-correlator; this device
can be used to measure fhe real and imaginary ﬁarts of the complex cross -
correlation function,

When the two signals are indentical the cross~correlation becomes
an autocorrelation. If the two signals are combined in reverse order,
another cross-correlation results which is the complex conjugate of the
original, The two cross-correlationsand the twe autocorrelations .can.

be arranged as the elements of a 2 x 2 matrix, the correlation matrix,

which completely characterizes the correlation properties of the two
signalsf This matrix is analogous to the well known coherency matri§§5:
used in the study of the polarization of light.

Finally, we will return to the cross-correlator to consider the
practical problem of taking finite time-averages instead of the infinite

time averages which are formally specified in the definitions of the

correlation functions,

*
See Davenport and Root43, page 60,
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4,1 The Complex.Crogs-Correlation Fanction "

Let us consider two RF voltages whose cross~-correlation function is

to be determined, We can represent them by

18

a(t) = Re Aft)e -~ (35)
Jw t

b(t) = R&B(t)e ° (36)

where A(t) and B(t) are slowly varying complex modulation envelopes. The

cross-correlation of the two real voltages is, by definition,

RAB (t) = 1linm T T a(t) b(t-7) dt . (37)

In complex notation this becomes

_, Je_(2t-1)
R .5 (r) = % Re é(t) B(t-T)e :

Jw t (38)
é_ Re <A(t) B’ (t-t)e © > .

+

The first term on the right side of the above eguation is the double
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-jw T

RAB(T) = RAB (T)e (43)

or

%
R (M) =<A(D) B (t-T) > (44)

This, of course, 1s a shift of the cross-correlation spectrum from
jw T
W to 0 and removes the RF "carrier” factor, e ©  from the correlation

P
function,

We see that a complex cross—correlation function is associated with
any pair of real, narrow-band, RF voltages. In the following section we
will show that the real and imaginary parts of this complex function can

be measured by a system employing synchronous detection,

4.2 The Cross—~Correlator

We will now describe a device which will cross-correlate the two
real RF voltages a(t) and b(t), In practice the Compound Interferometer22
employs this type of cross-correlator, Now, as is shown in Figure 2, one
of the signals, b(t), is delayed by the variable amount T:before it is
fed into a frequency shifter, The frequency shifter increases the
carrier frequency of the signal from wo to wo + wl with wo > wl' The

output of this device can be written as



VOLTAGE

SOURCES

SYNCHRONOQUS
SIGNAL

SOURCE

b(t)

DELAY
T

1
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\

MIXER
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W,

+ Vge (1)
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{vso(t)

AVERAGING

FILTER

Rag (T)

b(t-T,w,)
&

The Cross-Correlator,
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Jw T -0n0+ wl)t]
b(t-T,w ) = Re B (t-T)e ° . (45)

This signal along with a(t), enters a mixer which forms the square of

their sum,

[ a(t) + b(e-m,0) 1% =

| MR E

-jlew T ~2w_t] j[w v ~w t]] j2w t)
Re [fz(t) + Bz(t—T)e ° 1 + A(t) B(t~T)e © 1 e °

1 j[w T - wlt]

s s Re{iA(t)Iz ¢ 1BG-D 12 & At) B (t-Te . (46)

N

The first term on the right side of the above equation is the double
frequency component of thc mixer output, ;f a band-pass filter with
center frequency at W = wl is used to reject this signal as well as the
signal whose spectrum is centered at w = 0, we obtain as the filter out-
put

jlw T Anlt]

Re | ACt) B (t=T)e © . (47)

N

VBP(t) =

This is possible only if wl> O W where A W is the bandwidth of the

modulation signals A(t) and B(t).
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This filtered signal is fed into a synchronous detector along with a
reference signal given by

Jw .t -
V'REF(t) =Re e 1 . (48)

The detector output is the low-frequency component of the product of
these two voltages, It can be written as
Jw T

-1 * (i 0
Vep(t) =3 R A1) B (t-T)e : (49)

Finally, this signal is fed into an averaging filter, If, for
simplicity, we assume that the averager has the following ideal, (but

physically unrealizable), impulse resppnse.

v (t)

5—;——, for 0< t< 2T, (50)

=0 s otherwise,

the averager output and indeed the system output, after2T'seconds of

2

averaging, 1is

2T * Jw ;1
Re {—— A(T-t,) B (T-t -T)dt e Oj_ (51)

1
AB' V' T g 2T
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Letting t = T-tl,'this becomes

T * gwo'r
f A(t) B (t-T)dte v (52

1
Re < ——
2T o

N

AB ’T) =

In the limit as T-»© the system output becomes

jwo T

.4 T
lim 7' . ey l [—lim f *
Y == 1 -
T—amRAB, (M,*) =5 R L'—’w 2'1‘ A(t) B (t-T)dte

v [Gorep 2

Nh-'

Comparing this result with Equations (39) and (41) see that

l -
lim (T,7) = R (T) = Re R () : (54)
T w0 AB 2 AB

where R AB(T) is the RF complex cross-correiation function, Consequently
by time-averaging the output of the synchronous detector we obtain haif of
the real part of the RF complex cross-correlation function which is defined

by Equation (42).
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To obtain the imaginary part we simply perform the same cross-
correlation of the two signals a(t) and b(t) except that this time they

are taken in phase-quadrature., More specifically we cross-correlate

Jw t
a(t)= Re A(t)e ° (55)
and
J t + #2)
b' (t)= Re B(t)e
Wt
=Rej B(e ° , (56)
Letting
B'(t) = J B(®) (57)

the correlator output, as T-?, is

=]

‘ 1 - juioT
apr (0 =5 Re (<A B (=) > e (58)

which becomes

R ,p (M=

[

Jw T
Im {<A(t) B (t-) > e 0}, (59)
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Consequently we can form the complex sum

RAB (r) =2 R AB (t) + JR AB (T)j] (60)

T

Jw
= <A B (t-1) >Se ° (61)

to obtain the complex cross-correlation furnction of the two complex RF
jo t jw t
signals A(t)e ° and B(t)e © . As before, we can multiply both . ides
...J(,o T
of Equation (61)by e ° and obtain

R,p(T) = < A(t) B*(t-'r)> (62)

which is the complex cross-correlation function of A(t) and B(t),.

4.3 The Autocorrelation Functions

The complex autocorrelation function of say A(f) is defined to be

lim 1 IT A(t) A*(t-_T) dt

T—300 2T =T

R, (T)

<A(t) A*(t-7)> . (63)

It can be measured in the same manner as the cross-correlation function,
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RAB(T), To do this, we divide a(t) inte two equal parts and "cross-
correlcte’ the two signals as if they were distinct, The complex
correlator output, except for the factor 1/4, will be RAA(T)’ as given

by EBquation (63) above, The complex autocorrelation function of the

second signal B(t) is

*
Rpo () = <B(t) B (t-T) > (64)

and it too can be measured by the correlator which is described in the
preceeding section,

4.4 The Correlation Mafrix

Let us consider the two signals A(t) and B(t) as the elements of the

following two~dimensional complex vector

A(t) ]
—
£ () = . (65)
B(t)
- .—J

The correlation matrix associated with the two signals is defined as

- N E
R =<L ()T t-m > (66)
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where the dagger, *3 indicates the transpose conjugate of the vector,

Using Equation (65) it can easily be shown that

<A (t) A¥ (-7 ><A (t) B (t-'r)>

R(T) =

(67)
<Bt) ATe-m><BG) B 1>
and in view of Equations (62), (63), and (64), this becomes
R, (T) R, (7)
R(T) = . (68)
Roa (M) Rop (™)

The second cross-correlation function, R_ (T), is related to RAB(T) by

BA

Hermitian symmetry

*
RAB(T) = RBA(-T) . (69)

The correlation matrix has as its four elements the four correlation
functions that can be obtained from the two signals A{t) and B(t), It

completely characterizes the correlation properties of these signals.



37

4.5 The Effect of Finite Averaging Time

In practice, of course, one cannot go to the limit of the infinite
averaging time which 1s formally required by the correlation integral
(see Equation (37) }. It is of some interest therefore to investigate
the effects of a finite averaging time 2T, on the system output, The
latter generally will differ from that which results in the limiting
case of an infinite time average. We will obtain expressions for the
expected value and variance of the complex cross-correlation system output
as functions of T, In an earlier analysis(al)y Linder has dealt with the.-
effect of finite averaging time on the statistics of the real output of
an RF correlation detector, Since what we present here is intended as
only an outline of the problem we refer the interested reader to
Linder's paper for a more detailed analysis,

Assuming that the signal voltages a(t) and b(t) are ergodic random

processes, we can write the expected value of the complex system output

after 2T seconds of averaging as

T
1 *
EQR (T, T =Eqz= A(t) B (t-T)dt (70
-T
<T
1 *

= 57 E {A(t) B (t=-T)» dt (71)

-T

= E { A(t) B (t-1) (72)
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where E {f(t)} is the expected value (mathematical expectation) of f(t),

But by the ergodic hypothesis we have, with probability 1,

*
E {A(t) Bﬁ(t—-r) = <A(t) B (t-T) > . (73)

Consequently, in view of Equation (62), we can write

E{R, (T,T)} = R, (7) (74)

which is the desired output obtained after an infinite time average,
Thus the output error has an expected value of zero, which is independant
of the length of the averaging time,

We will now determine the system output variance, a real positive

number which can be written as

2 oy (2 o\ 12
0", g(T,T) = E |RAB(T,T)[ - |E Ryg(T;T |7 (75)

It can be thought of as the fluctuating a<c. power of the output which

2
exists along with the desired d-c. power, IRAB(T)i . We can write the

first term on the right side of Equation (75) as
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2 -1 T aT * *
E IRAB(T’T)I = E ;Ff f A(tl) B (tl—'r) A (tz)B(tz—T)dtldtz (76)
~T T

1 T pT * *
= -—é-f f E{A(t)DB (t,-TA (tz)B(tz-T)l dt dt, @)
4T 7 %y

J

Until now the probability distribution of the random signals has not
been specified, It could be quite arbitrary, However 1f the signals have

= a gaussian joint probability distribution it can be shown47 that

* * .
E A(tl)'B (tl-T) A (tz) BU:Z-T) =

~

) * *
E A(tl) B (tl-‘r) E A (t2) B(tz-‘r)

* *
+ E A(t,l) A (tz)} E (B (tl-'r) B(tz-T) (78)



and by using the ergodic property of the signals we have

* *
E A(tl) B (tl-T)A (tz) B(tz-T) =

* *
Ryg(™ R (M) + R, (t3%t) R o(t -t,)

B BB

Substituting this result back into Equation (77) gives
2 1 TpT *
E IRAB(T,T)I = ——EI f Ry, (t,=t) R oo (=t )dt dt,
4aT
T ~T
2
s |Rygm | 2

in view of Equations (74) and (75), the variance can be written as

2 1 T aT *
0" g (0T = —5 .I f Ry, (t-t,) R ot ~t)) dt dt, .
4T
=T =T
Letting tl--t2 = t it can be shown that we can reduce the above double

integral to

40

(79)

<(80)

(81)
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2 1IZT )R (0 RS _(tar | . (@82
o g™ = Re $0 (1--z5) R, (¢ ggltidat . (82)

Note that this is independent of the time delay T,
The above expression is clearly dependent on the nature of auto-

currelaiion functions HAA(T) and R (7). If, for analytical purposes,

BB
we assume that the signals' power spectra are both uniform in the band

Iw' < A W and are zero outside, then

RAA(T) = RBB(T) = Ro sin AwT . (83)
AWT

The output variance is

2
R “, 2T . 2
__o _ t sin AW t
o® 5(T, -—Tfo (1- =) (—————-A“ - ) at 84)

which after some manipulation can be shown to be

2
2 .
a AB(T,T) = R0 Sia AwT) 4+
2ANWT
2 -
RO Ci(4a @ T) ~1 =y -1n4{2TH 2A w cos 4A W T | . (85)

e e A WT
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*
where Si (x) and Ci (x) are the sine and cosine integrals respectively’

and y =,5772,., is Euler's constant. This is a rather complicated

result, but for large T we have

) 2
OZAB(TIT) - ~ RO2 Si(aw T) 4 Ro . (86)
_ T 4 T
s 21 2 A0 T

The output variance i1s inversely proportional to T for T large,.
Although this has been shown for the particular case of uniform power

spectra it can be demonstrated that even for arbitrary power spectra
27T

¢ -
.

2 . .
o) AB(T,T) is inversely proportional to T when T >> ~

27 ), the correlation functions

(T << =

On the other hand for T small,

in Equation (82) are essentially constant over the entire range of

integration and we can write

(o) (87)

~

2 *
o“(1, ™ = R, (0 R

2m
T << =
A

which for uniform power spectra in the interval |w|$ Mo gives

*
See for example, Schelkunoff, "Applied Mathematics for Engineers and

Scientists,” Chapter 18, Van Nostrand, 1948,
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o®(1,™) ~ R 88)
L 27 ?
AW
*
Since it can be shown that
,,, +
|RAB(_T)| < (RAA(O) Rep (o)) (89)

it follows that the standard deviation of the system cutput for small T

is equal to or greater than its expected absolute value, For meaningful
results ore must therefore take reasonably long averaging times, Although
we have considered only the statisties of the oulput of the cross-
correlator it is obvious that the results apply to the autocorrelation

outputs also, Thus

( )
E fAA(T’T)j = R, (T) (90)

and
2T
2 1 t 2
o® () =i~'j; @- 59 |R,®)] * at (91)

Similar expressions obtain for the autccorrelation of b(t).

* 43
See Davenport and Root , p, 61,
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5., THE TWO-ANTENNA CROSS-~CORRELATION SYSTEM

We will not consider the cross-correlation of the voltages obtained
from the two linear antennas when they are excited by an arbitrary dis-
tribution of remote radio sources. It will be recalled that the source
distribution can be described by its mutual coherence function T(T,u,v).
We will show that the two-~antenna correlation system can measure this

function, The patterns of the two antennas are scanned independently,

one in the u direction and the other in the v direction, and when the
voltages from the antennas are cross-correlated we obtain a complex cross-

correlation output function which can be written as

RAB(T,u,v) = T(T,u,v) * CAB(T’U’V) (92)

where * is the symbol for convolution (in three dimensions), and
CAB(T’u’V) is the complex system function which will be defined in
Section 5,2,

A Fourier ana:iysis of this output will be made and from the

T, (T,u,v)

analyslis we will be able to define a principal sclution AB for

the cross-correlation antenna system, This principal solution is a
generalization of the one~dimensional principal solution To(u) which was
first proposed by Bracewell and Robertslsin connection with radio
astronomy.

5.1 Description of the Antenna Voltages

A diagram of the two-antenna cross-correlation system is shown in

Figure 1. Before eptering the cross-correlator, each of the terminal
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voltages ao(t,u) and bo(t,u) of the two linear antennas is passed

* ..
through nmarrow-band RF filter . The two filtered signals ¢an be

represented by

0 pfd .
Aft,u) =f f V(t-t ,u) Al -wdu £,(t) dt (93)
o =B
_repP
B(t, V) ..f f V(t-t,,v ) Blv -v)dv, #(t)dt, (94)
o “p

where fA(t) and fB(t) are the envelopes of the impulse responses of the two
j

filters and the RF carrier factor eJ ot has been suppressed, Note that the

patterns of antennas A and B are scanned independently in the u and v

directions respectively. The source density function V(t,u), weighted by

these pattern functions, is integrated over the visible range to yleld the

terminal voltages which then are convoluted with the filter response

functions, If we define the mirror image, or reverse, of a function to be

\é(x) = g(-x) (95)

we can write the above equations as

*
We have tacitly assumed that the frequency response of each antenna itself
is essentlally constant over the bandwidth of its RF filter,
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A(t,u)

v
V(t,w) * £, () Alw) (96)

B(t,v)

V(t,v) * £(0) ¥ . (97)
The convolutlion sign applies to both variabkes,t and u in Equation (96),
and t and v in Equation (97).

These two equations show that each antenna with its associated RF filter
acts as a combination spatic-temporal frequency filter of the two-
dimensional space-time signal V(t,u), As is indicated in Figure 1 it is
the two output voltages from these filters that will be cross-—correlated.

5.2 Cross-Correlation of the Antenna Voltages

Comparing Equations (35), (36) and (96), (97) we see that the
complex cross—correlation output function :bf the antenna system can be
written down by replacing A(t) and B(t) by A(t,u) and B(t,v) respectively,
in the varilous corrclation equations, Thus the complex system output,

after 2T seconds of averaging, is

2 [T At w B (t-7.v) dt (98)
2T s Y sV

-T

RAB(T’T’U’V) =

and the expected value is

R, (T,u,v) = <TA(t, ) B' (t-1,v) > . (99)
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Substituting the expressions for A(t u) and B(t,v) given by Equations

(96) and (97) into the above, we obtain

// W * % Vx
RAB(T,u,v) = V(t,u) * fA(t) A(u) V (t-T,v) * fB (t=T)B(v) (100)

(101)
_fopopP BV(t )v*' T ™ £ (£t )f (¢ )dtdt\}((—- )\é*(- Ydu, d
”[ f Thpa Y L 'tz"’1> ATttt tAt Ot iU 2B Avmy, Jdu, vy
0% =B =P

In view of Equation (12), we can write
. *
<::}(t-t1’ul) v (t-T~t2,vlz:>'— T(T-t1+ tzﬁul’vl) (102)
and Equation (101) becomes

. ] v Vi )
Ryp(T,u,v) = T(7,u,v) * £, .(7) A(u) B(v) (103)
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where

* \t(*(’r) 104)
fap(™ = £, (M R . {]

Thus we can write

(r,u,v) = T(T,uv) * B('J‘,u,v) (105}

RAB CA

where we have defined the complex cross-correlation system function to be

v

Vi
CAB(r,u,v) = fAB(T) A(u) B (v) « 1106)

Equation (105) 15 the fundamental equation of the cross-~correlation

process, 1t shows how the system function (T,u,v) operates on the

CAB

source funciion T(T,u,v), (by convolution in three dimensions), to give

the cutput complex cross-~correlation function R

AB (T,u,v),

5.3 Yourier Analysis of the System Output

In a manner similar to that which led to the definition of the com-
bined spatio-temporal spectrum of T(T u,v) as given by Equation (24) of
Chapter 3, we define the spatio-temporal spectrum of the complex crouss-

correlation system output RAB(T,u,v) to be
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- J (WT=ux4vy)

o0
AB(w x,y) =-L37—2- f I I R (T,uv)e drdudv . (107)
=00 00

Substituting the expression for hAB(T,u,v) of Equationn (105) into the above

gives
. (108)
0 ® ®
1 cp =J (WT=ux+vy)
rAB(u,x,y) = -—;—3*7—5 f f f T(T,U.’V)* CAH(T’U.’V)G deudV.
(2w fo S tw
We can invoke the convolution theorem to write
3/2 9
r ,gW,x,¥) =(2m) tw,x,y) ¢, (w,x,y) (108}

where cAB(ugx,y) is the inverse Fourier transform of the system function
CAB(T,u,v), Using the expression for CAB(T,u,v) given by Equation (1086)

we obtain

o0 w0 00

6 p(@,%,y) = f f ffA(*)& ™ Xewy ¥t

(2‘") =00 =00 -0

e (110)



50

By again using the convolution theorem we can write

*® c K
5@, %,y) = 421 F, W) F () a (x) b (y) (111)

where FA(u) and FB(u), the inverse Fourier transforms of fA(T) and
iB(T) respectively, are the frequency response characteristics of the
two RF filters, and where a(x) and b(y) are the aperture weighting

functions of the antennas. Thus

7 {0, %,3) = 4T°E(W,x,Y) F (@) B W) a () by

(112)

(M 1w, x,y) ¢, (@ x,y)

Equation (112) is the fundamental cquation in the frequency domain.

It shows that the spectrum of the output is proportional to the spectrum
of the mutual coherence function weighted by the system's frequency
response function which is factdrable.

5.4 The Principal Solution

Our main purpose is of course to measure T(T,u,v),or equivalently,
1its spectrum t(w,x,y). However, if the bandwidth of the RF filters
are both say 24w, it follows that FA(u) FB*(uD Z 0 for lwl > Au. The
system passes only those temporal frequencies of the source distribution
which lie in the narrow RF band Iu-uol < fw. To investigate the

pass-bands of spatial frequencies of the system we note from Figure 1
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that a(x) = 0 for x| > L,/2 and b(x) = 0 for |x=£] > Lyy/2 where L, and
LB are the lengths of the two apertures. Consequently, it is clear that
the Cartesian product a(x)-b*(y) £ 0 except when [x| £ LH/2 and |y-={] < Ly2.
In Figure 3 this region in the Xy plane is shown cross~hatched and
labeled 6A8° Note that the spacing £ petween apertures causes the
region to move away from the origin. Finally we can define a three-
dimensional region QAB which delimits the spatio-temporal "aperture” of
the system, This region is shown in the diagram of Figure 4. Sirictly
speaking, since the functions FA(u) and FB*(u) are analytic in-a half
plane 4 , they are not identically zero outside of QAB' However in
ractice there is negligible error in assuming that they are zero.
Now from Equation (112) we see that since QAB(w,x,y) is zero for
points outside QAB’ the output spectrum coniains information only about
that part of the specter t(w,x,y) which lies within QAB' This being
the case

, we can define

rapW,x,¥)
tAB(w,x,y) = 5 —, for Ww,x,y)E QAB 3
41" ¢ AB(w,x, y)

0, otherwise, (113)

2

where (W, x,y) € QAB means that the point with coordinates (w,x,y) belongs
t i t .
to the point se QAB

The Fourier transform of t, (w,x,y) is the principal solution

AB



Figure 3,

XV

Spatial Frequency Plane of the Cross-Correlation Antenna

System with the "Aperture” EAB Shown Hatched,
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c o0 o0

1 ’ JiwT-xu+yv
TAB(T,u,v) =373 f ff -tAB(w,x,y) e { y ]dwdxdy. (114)
(2m)
=00 =00 OO

It is a filtered version of the true distribution T(T,u,v) with no
components of frequency which lie outside the region QAB' However,
those components which are present are identical to those of the true
source distribution,

5.5 Direct. Measurement of the Principal Solution

Equation (109) indicates that the output spectrum rAB(w,x,y) is
generally a distorted version of the true spectrum t(w,x,y). Because
the system characteristics Fk(w), FBGn), a(x), and b(y) are not only
zero outside of QAB but can also take on arbitrary values inside the
region, it was necessary to divide the output spectrum by the system
spectrum (see Equation (113) ) to recover the principal sdlution spectrum
' tABGn,x,y)_
Heowever, if the system characteristics were all uniform within

Q

AR’ i.e if

.2

1
e, g @, x,y) = qABGn,x,y) = Z;E , for (W, x,y) € Q5 (115)

= 0, otherwise,

where qABG»,x,y) is defined as the system function which is uniform in

Q

AR’ then from Equation (113) we have
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rp@%y) = t@xy), for (w,xy) €Q . (116)

=0 s otherwise,

The Fourier transform of q(W,x,y) is

u v
QAB(T,U’V) = AszALB sine (Q%:) sinc 5%— sine (om0 ejlv (117)

"

48
where we have used the "sinc” notation of Woodward |,

sin T x
Sincx=——__.
T x

Comparing Equations (106) and (117) we see that

fAB(T) =2 Am?sinc Qgi (118)
T w
and
£,(t) = £,(t) =’\Fm sinc (Aprt) . (119)
T K

*
The responses fA(t) and fB(t) are physically unrealizable since they are

non-zero for t < 0. However, if we are willing to accept a delay of Tl

an

seconds, with Tl>> N between the input and the desired output, then to

a good degree of approximation the response functions

* 4
See, for example, Davenport and Root 3, p. 174,
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2 LW
:fA(t-Tl) = fB(t-Tl) =I\E AW sinc_[—i- (t-Tl)] (119.,a)

can be synthesized, The two iypes of response fA(t) and fAi-Tl) are shown

in Figure 5. Since fA(t-Tl) = 0 for t < 0 there is usually negligible

error in having the actual response envelope identically zero for t < 0,
Consequently, i1f the system impulse response enveiopes and patterns

are given by Equations (117), then the spectrum becomes (@pproximately)

Jw(r, -1.)
2 * ﬂz g 1 1 -
4T F, (w) F_(W) a(x) b(y) = 47 ————— T 1 for (W x,y) € Q _,
A B 2 ? 2 AB
4
(120)
= 0, otherwise,
JuTy
The phase factor e is due to the time delay necessary to insure a

physically realizable system, Since we have the Hermitian product of
jwr = jwT

%k
the two filter spectra, FA(w)e 1 and Fb(w)e this phase factor

3
cancels out in the final result (a rather fortunate occurrence), It is
interesting to note that the analogous condition of physical realizability
does not obtain in the space domain, The antenna pattern's reverse,

X(u), is actually the response to a point source (spatial impulse) in

the u = 0 direction, 8Since most patterns are real and have even symmetry,
it 1s clear that X(u) # 0 for u< 0, Physically, we might "explain"
this by saying that we can go forward and backward in space but only forward
in time., However in practice there is a very important physical condition

that must be satisfied in the spatial domain, namely, the antenna must be

of finite length, In a sense this is an even more stringent
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condition than that in the time domain, It allows the aperture function
to be non-zero only over a finite region (e.g.,|x|g L,/2), whereas the
impulse response of a time filter can be non-zero over the semi-
infinite region t > 0,

Returning to the system with a uniform frequency response in the

I
region QAB we see that to a good degree of approximation (if T1>> %;)

RAB(T, u,v) = TAB(T,u,v)

(121)

[

T(T,u,v) * QAB(T’ u,v)

which 1s the principal solution,

5,6 Cross~Correlation System Outputs for Coherent and Incoherent Source

Distributions

In Equation (28) in Chupter 3 it was indicated that a ccherent
quasi-moncochromatic source digtribution has the following mutual coherence

function,

*
T(T,u,v) = V(u) V (v), for 7 << 24//W,

where A is the bandwidth of the signals and satisfies the inequality
M << wo" Equation (29) indicates that the spatial frequenecy spectrum of

the above function is
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t (T,x,y) = v(x) v*(y), for T << 2m/0w

Both the mutual coherence function and its spatial frequency spectrum
are factorable for small T.

Now the rystem output in the presence of such a distribution is

* v v
RAB (T,u,v) = V(u) V (v) * fAB(T) A(u) B(v) {122)
T 2
N
, * *
= KV *Aa(u) V (v) * B (v) (123)

where K is a constant, The output function is independent of T and
separable (for T << 2m/AW).
Consequently .we can. - write the spatial frequency spectrum of the

output as

70,5,y = K 27 v(x) a(x) v (y) b () (124)
T << 27/

i.e., this gpectrum is also separable and independent of T for small T.
If the source distribution is incoherent then we can write (see Chapter

3, Equation (30)),
T(T,u,v) = T(T,u,u) S(u-v)

as its mutual coherence function. The corresponding spectral density

function is

by
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20
t{w, x,y) = —"—%75— T(T,u,v) 6(u-v)éjoﬂ?'ux+vy)deudv
(2m) hn Yoo 2o
or
oo 00
t{w, x-y) = '_1375_[ Ter,u,w) e J@TIUGE)] (125)
(27) 0 Yoo

which is a function only of the difference, (x—y), of the spatial frequency
coordinates, If the system has a uniform weighting function iz the regilon

then its output spectrum, and the principal solution spectrui, will be

QAB’

rABGﬂ,x-y) t(w, x-y), for (W,x,y) € QAB’

=0 , oOtherwise, (126)
which also is a function of the difference, x-y, of the spatial frequency
coordinates,

Combining both the coherent and incoherent cases we can make the
following statements:

a) If the source distribution is coherent the spatial frequency power

spectrum is separable for T << ZH/Awo
b) If the source distribution is incoherent the spatial fregquency

power spectrum is a function only of the difference, (x~y), of

the spatial frequency coordinates,
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In practice one can observe the spectrum only in the "aperture

Q Although t{w,x,y) is an analytic function, and in theory can be

AB’
extended to points outside QAB by analytic continuation, it has been
shown49 that in the presence of measurement errors very little meaning-~
ful continuation is possible., Consequently even if t(w,x,y) is
experimentally observed to be "coherent" or "incoherent " within QAB one
cannot be sure that it will continue to be so outside the aperture.
However from a practical point of view, 1f the spectrum, when measured

within QA satisties either of the above conditions, it is reasonable

B)

to infer that the sources are coherent or incoherent as the case may be,

5.7 Simplification of the Cross=Correlation System for the Case of

Incoherent Sources

If the sources in different directions are incoherent, it is of no use
to point the patterns of the two antennas in different directions., Only
when the two beams are poinied in the same direction will there be
appreciable ocutput from the system, Thus if we set u = v and subgtitute

Equation (30) into Equation (105) we can write

RAB(T,u,v) =T(T,u,u) ¥ CAB(T’u’u)
u=v

00 400 00

v *
= T(T-t,ul,vl) 5(u1 -vl)fAB(t) A(u—ulfﬁ(u-yl)dtduldvl
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00 00
' () Xumu ) B¥(umu)) ata 7
= T(T-t, ul,ul) I t) (u—u1 u-u,) dt u . (127)
-0 =00

Using Equation (34), and letting R, (T,u,u) =437 R, (T,u) we obtain

14 Ve
B(T) A(u) B (u) (128)

Ryg(Tyw) = T(T,u) * £,

as the two-~dimensional cross-~correlation output for the case uvf an incoherent

source distribution,

We define the spatio~temporal frequency spectrum of this output toc be

v
ryg(9,2) = 2T t(,2) F,@) E, @) a() * b (2) (129)

where z = x-y, (see Equation (33)). Since the system's pattern is now in

v
the form of a product of the individual field strength patterns A(u) and

V*
B (u), the spatial frequency spectrum 1s in the form of the convolution
Vi
of the aperture weighting functions a(z) and b (z). Consequently, if the
L L

aperture functions are uniform for Izlg-{- and |z-{ !g—-; , as 1is
V#*
shown in Figure 6a, then the spatial frequency specirum a(z) * b (z) is

shown in Figure 6b, The spectrum is a trapezoidal function and weights
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more heavily the spatial frequencies near the center of its "aperture"
than those near the edges, This results in a distortion of the source
spectrum as "seen"  at the system's output._ Note also that the width of
the "aperture" of the system is given by the sum, L, + LB’ of the aperture
widths of the individual antennas and is centered at z =-f,

In order to obtain a uniform spatizl frequency spectrum one must use
a compound interferometerzz, A diagram of the weighting functions and
assoclated spectrum of the system is shown in Figure 7, Instead of two
uniformly weighted apertures the compound inéerferometer consists of just
one uniformly weighted aperture and a simple interferometer, The two
isotropic elements of the interferometer are located at the end points
of the second ape?ture. Mathematically, they can be represented by
Dirac deltas and their convolution with the other aperture function results
in the uniform spectrum shown in part b of the diagram, The width of the
"aperture’ is also given by L, + Ly and its center is located at z =~f,

In Chapter 3 it was shown that in the incoherent case T(T,u) is a
real function., Consequently, its spectrum is complex symmetric, i.e,,
tw,z) = t*(-w,--z)° This means that by measuring t(w,z) on the interval
2|z+1 hs LA + LB ;We can automatically deduce its values on the interval
"2lz=- K L, + LB . This region is also shown in Figures 6b and 7b,

A
Finally, we can define a system "aperture" Q'AB for the incoherent
case which is analogous to the more general QAB of the partially coherent
case, Thus in Figure 8 is shown the combined spatio-temporal frequency

plane for the incoherent case with the region Q'AB indicated by cross-

hatching.
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In summary, we can say that an incoherent source distribution has a
principal solution spectrum which is a function only of the difference
z = x-y of the spatial frequency coordinates, Consequently, the problem
reduces from three dimensions to t{wo and by pointing boih antenna patterns
in the same direction (u = v) the system output also reduces to a function
of two dimensions, delay T, and beam direction u, A principal solution

can be defined whose frequency spectrum is complex symmetric(i(w,z) = t*(—w,—zDJ

L +L
and for the above antenna system is identically zero for |z-|4]j> —égvmg

and |w|< sw. Indeed, it was this type of principal solution which was

1
first defined by Bracewell and Robertis 8 in connection with the mapping

of the incoherent sources which are encountered in radioc astronomy.
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6. THE CORRELATION MATRIX OF THE ANTENNA SYSTEM

It will be recalled that in Section 4.4 we introduced the correlation
matrix R(T) which is associated with the complex envelopes, A(t) and
B(t), of the narrow-band voltages a(t) and b(t). We will now show that
for the two—anteﬁna gorrelation system’wg can obtain a correlation
matrix ZR(T,u,v) which yields consideirably more information about the
source distribution than the original cross-correlation function RAB(T,u,v).

6.1 Cross-Correlation of Signals from Two Coincidenti Antennas

Let us consider one of the antennas, for example antenna A. If the
signal from each of its elements is divided into two parts, with
predétermined wcighting coefficients, one obtains two sets of signals
which can be combined additively to form two distinct output veltages
from the antenna aperture. In effect they are the signals from two
coincident antennas, Al and AZ’ whose patterns can be independently
scanned in the u and v directions respectively. These signals, after
eachrhas passed through an RF filter, can be cross-correlated in the
game fashion as the signals from the distinct apertures A and B. The

complex cress~correlation function that resSults is

R, (T,u,v) = T(T,u,v) * Caa(Hu,v) (130)
wvhere
T T Y T v Vs
CAA( ,U,v) = fA () * fA (M Al(U) A2 (v). (131)

1 2
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A similar cross—correlation function of two outputs from antenna B
cah be obtained and it is given by
Rop(T,u,v) = T(T,u,v) * CBB(T,u,V) (132)
where
e £ (1) + ¥ ') B () B W) (133)
Cap(Tsu,v) = fg (T) * £, (T) B, (u) B, (v)-
1 2
6.2 The Correlation Matrix of the Two-Antenna System
By analogy with Equation (67) we can define the correlation matrix
of the antenna systen to be
RAA(T,u,v) RAB(T,u,v)
R(T,u,v) = . {134)

RBA(T’U’V) RBB(T,u,v)

As before the cross-correlation function RBA(T’u’V) is related to RAB(T,u,v)

by the formula

*
RBA(T,u,V) =R (-7, v,w (135)

A

Now just as in the case of RAB(T’u’V)’ we can take thke Fourier

transform of this correlation matrix and we obtain
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rAA(quI y) rAB(u, Xy y)

rlw,x,y) = (138)

rBA(u,X,y) rBB(w,x,y)

where

E 3 *

£, W5,y = 47 tw,x,y) FAl(u) ), W 8, ay (y) (137
* *

(W, 5,3 = 4Tt W, x, ) Py @) Fp (W) B{x) b, (y) (138)
. i

£ (W,5,3) = 417t (W,x,y) F, (@) F @) aG) b (y) (139)

3
= I, (w,y,x). (140)

Each of the elements of the frequency domain correlation matrix can be

*
non-zero only where the corresponding system function, e.g., Fy (u)FB (w)bl(X)bz(yl
1 2
is non-zero. Iet us assume that the temporal frequency pass-bands are all

equal in size. We can then turn our attention to the spatial frequency
domain, Figure 9 shows the regions in the xy- plane where the four

distinct system functions are non-zero. Note that Q,_ is the "aperture"

AB

of the original cross-correlation system (see Figure 3). The three other

regions, Q Q and Q indicate the additional "apertures" of the
g IV BA’

BB’

system,

6.3 Principal Solution

By analogy with the principal solution for the original cross-

correlation system giver hy Rquation (114), we can-lefine a principal solution
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for the correlation system as a whole to be the Fourier transform of

to(w,x,y) = tAA(u,x,y) + tAB(U,x,y)

+ tBA(u,x,y) + topW,x,¥)

where

rAA(w, x,¥)

— if (w,x,y) € Q
WF, WatIg (y) ’ 7 AA?
1 2 1 2

2

tAA(w,x;y) = -
A

a4

=0, otherwise.

Similar formulas obtain for tAB(U,ny) , tBA(w,'x,y), and tBB(u,x,y)..
Thus
0
J (WT=xutyv
TO(T,u,v) = to(u,x,y) e 3 (Wr=xusy )dudxdy
o =00 -0
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(141)

(142)

(143)

is the principal solution for the correlation system as a whole. Clearly

this solution gives us much more information about the source distribution

than does the cross-correlation system!s principal solution as given by

Equation (114),

The special cases of coherent and incoherent distributions give rise

to the same type of ocutputs for this more general system as for the one

described previously.



Finally, 11 shouid be noted that if the two apertfures A and B are
considered as parts of a single aperture C, and if two distinct signals
from this larger aperture are cross-correlated, as described in Section
6.1, then the output from this system will have a spatial frequency
"aperture” which is the same as that of the correlalion matrix,
Consequently, the principal solution for the aperture C is the same as
the system solution given by Equation (143). Therefore, when mapping a
source distribution, it 1s sufficient to ohtain a cross-correlation
function from the total available aperture, There is nothing available

in the cross=correlation of signals from parts of an aperture that is

73

not present in a cross~correlation of the signals from the entire aperture,
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7. COMPARISON OF THE CROSS—CORRELATION AND THE CONVENTICNAL ANTENNA SYSTEM
7

In this chapter it will be shown that when the terminal voltage of
a conventional linear antenna 1s square-law detected and time-averaged,
the resulting outpul is just a special case of a cross-correlation antenna
gsystem. This means that a compariscn of a linear and a cross-correlation
system should he made between the square~law detqcted output of the former
and the cross—éorrelated-output of the latier system.

7.1 A Linear Antenna with Square-Law Detection

A diagram of a conventional linear antenna with a gquare-law detection
system is shown in Figure 10. After being passed through the RF filter

the antenna voltage can be written as

jw t
d(t,u) = D(t,u) e (144

where by analogy with Equations (96) and {97)cf Chapter 5, we have
D(t,u) = V(t,u) = frﬁt) g(u) . (145)

The antenna's pattern is D(u) and the filter response envelope is fxft).

This filtered signal is fed into a square-law dewice wkose output is

j2w t
1 2
dSL(t,u)= 5 Re Dz(t,u) e 01 + -2]= [DCt,u)|” . (1.46)

)

This signal is then time-averaged. Since the double frequency component

of the square-law detector output has a zero average we obtain
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2
dg, (t,u) = [Re d(f,u)]

Figure 10, A Conventional Linear Antenna which Uses Square-Law

Detection,

fp (1) RF
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<dSL(t,u> = -;—<ID(t,u) Ié * (147)

Now it will be recalled that the cross-correlation's complex output

is

RAB(T,u,v) = <:§(t,u) B*(t-T,vi::> . (148)

Comparing these two results we see that except for the constant factor.
1/2,the output from the square~law detection system is simply a degenerate
case of the cross-correlator output which occurs when A(t,u) = B(t,u) = D(t,u).

It is half the Autocorrelation function of the signal from antenna D evaluated

at T = Q.
v Y
2 (g (1‘,u> = T(T,u,v) * 2 (T D) D' (v) (149)
T=0
u=v
where
v
£,p(™ = £,(M * £ (D) | (50

7.2 Disadvantages of the Conventional System

Since the input to the square-~law detector is the terminal voltage
of only one antenna with only one scan parameter u, w6 see that when
the source distribution is partially coherent, it 1is imposgibie %o-obtaln the

three~dimensional mapping of the mutual coherent: function- of

the source distribution. As indicated by Equation (149) one can only
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obtain the values of the antenna voltagé's autocorrelation function
along the single line, T = 0, u = v, whereas the cross-correlation
system employing a single aperture yilelds the values of the filtered
function for all points in the three-dimensional output space of the
system,

In the case of incoherent sources the problem is not nearly as
serious since even with the correlation system it is only the u = v plane
that 1s considered when the source distribution is scanned. (See Chapter 5,
Section 7), Indeed the only difference in the space domain bhetween
the two outputs is that the power pattern of the conventional system
is lD(u)l2 and that of the cross-correlation system is A(u) B*(u)
(compare Equations (103) and (149)). The iatter pattern is clearly more
flexible since it is the product of two distinct field strength patterns,
It degenerates to the conventional power pattern when the twe field

strength patterns are identical, (A{u) = B(u) = D(u)),

7.3 Comparison of the Two Systems for The Case of Dolph-Chebyshev

Array Synthesis

Let us first consider a conventional system whose antenna is in
the form of a linear array, It was shown by Dolph40 that the optimum

array pattern is given by

D) =T () (151)
where ¢ = ¢D cos (B sin 9),
{ = element spacing,
T
0 = angle measured from the normal to the array,

n+l = number of elements in the array,
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*x
TnOP) is the Chebyshev polynomial of degree n.
The value of ¢o is related to the sidelébe level P of the pattern by

the formula
p =20 log, . Tno¥o) . ) (152)

The pattern is optimum in the sense that for a given array, of all patterns
with an arbitrary sidelobe level p, the Chebyshev pattern has the
narrowest beamwidth, or conversely, of all patterns with a given
beamwidth it has the lowest sidelobes. .

However, if the terminal voltage of such an optimum array is square-~
law detected, then the detector output for a point source in the

direction ¢s is proportional to
Ipab-¥ )12 = v b ) . (153)
s n s

This output is a polynomial of degree 2n but is not the Chebyshev

poiynomial of that degree, T2n0¥4¥s). Thus when the pcwer pattern is
considered the conventional Dolph-Chebyshev design is not optimum.

Let us now turn our attention_to the cross-correlation system shown
in Figure 11. The array is given the weighting coefficients necessary
to produce the conventional field strength pattern Tn(¢)Q However,
the canter element of the array has its signal split into two parts; the
first is given the amplitude_% (1 - %39 and the second the amplitude

1
% (1 + 73). The signals from ihe other n elements are combined in the

¥For a discussion of55he properties of these orthegonal functions, see
Courant and Hilbert ~, pp. 83-30.
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usual way to form Tn0¥); however, since the central element's signal
(normalized to 1) is missing we actually obtain TnOP) - 1. This signal
is split in two halves and to one half id added the first part of the

center element's signal to form
A = 2 (T () - =) - (154)
2 "' n J2
Likewise B(W) is formed:by adding the remaining two signals,
B = = (T + 32) . (155)
2 n 73

Now if we note of the following identity

: o 200y L
Tzn(‘l-') = 2T M -1 (15€)

H

and ¥f the abovc pair of combined signals are cross-correlated with
zero time delay 4t .is eusy to;see:that except .fpr a congtant. factor. we:
Sbtain the:following product pattern
*®
RW) = A B (V) = T2n(¢) (157)
For the point source in the directiondr's we have

RO = Ty W - ¥ (158)

36
as the system output. This method, due to Price , yields the desired
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result. The system output is a Chebyshev polynomial of degree 2n and as
such it has the lowest sidelobes. of any possible pattern of the array
when a certain beamwidth is specified. In particular, the improvement
in the s?delobe level of this cross-—-correlation pattern over that of
the conventional Dolph-Chebyshev pattern {i.e., Equation (153)) is
shown in Figure 12. Both patterns have the same beamwidths measured
to the first null and the element spacing is N/z. The 1mprovement,
plotted as a function of the sidelobe 1level of the conveptidﬁdl pattern,
is about 6 db but is slightly higher for small arrays and relatively
high sidelobe 1levels,

It is worth remarking that the method of synthesizing the prqduct
pattern Tzn(¢), which we have just described, is not uniquel To show

this we note that we can write

2
in—l -
T2n(¢) = 2 k|=|l W - ¢k) (159)

=]

where ¢k} the kth zero of the polynomial,is given by
“p = COSs

7], k=1, 2, ...., 2n. (160)

The 2n zeros determine the polynomial. They can be arranged in two groups

of n zeros in

W =_21. oz (161)

ways.
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Since one group of n zeros will determine say A(_‘JJ)j and the bther will
specify B(¢), we see that there are W possible ways to synthesize the
product pattern TZHOP) =AW B ). It is natural to ask if there
is an optimum factorization of Tzn(‘l’)J i.e., which of the W possible
pairs of factor patterns AM) and BQW) is best in some way.

If the system is being used to receive a signal from some Xnown
direction, and if there is a distribution of incoherent noise sources in

addition to the signal, then the system output will be

Re,y(T¥) = [8,(MBG4) + NN + 2,00 a) B H)  Q62)
where SO(T) GCPJPS) and N(T,¥) are the signal and noise coherence functions
respectively. It is clear that it does not matter how the zeros of
TZn(¢) are shared between A(W) and B(W) since these patterns enter the
output expression simply as the product Al B*CP) = T2n0¥), Consequently
the W possible ways of producing the optimum product pattern are all
equivalent when the sources are incoherent.

This is not the case for coherent and partially coherent sources,
In particular, let us consider the case of a desired signal incident from
the direction ¢S aiid a coherent interfering signal from an arbitrary
direction ¢c° In practice this situation occurs when there are two

distinct paths between a transmitting and a receiving antenna (multipath

1
propagation), It has been shown elsewhere5 that if the relative

amplitudes of the desired and interfering signals are 1 and Sng

respectively
(§ 15 the relative phase), then the real system output, when T'= 0" and

both patterns are beamed in the @S direction, is proporlional to
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Ao(‘l‘s - ¢c) + BOO¥S - ¢c)

%’(o,ws) = 1+28 5 cos &
+s?a b, -¥) B -¥) (163)
where
A h = ﬁ%’; , B = -g—%;— ) (164)

are the normalized, real, factor patterns of Tzn(‘-l’)° Notice that the
second term in the above expression, which is due to the cross-product
of the desired and interfering signals, is proportéonal to the sum of the
two factor patterns. If the interfering signal 1s low level (8 << 1),

the interference rejection will depend on this sum pattern. Now if

we select the factor patterns in the manner of Figure 11 then we have

T(tl!—'-l-')-l T ) 4+ 2
LA $rysp @byt s8¢ "z+f_1,s° 75(165)
2 o o s e T(O)-Jl? Tn(0)+%
Tn€¢s_¢ ) - 2Tn(0)
= . (166)
T _{0) . 1
2T_ (0)

If, as is usually the case, Tn(O) > 1, we can write the sum pattern to

a good degree of approximation as

‘%[AO(‘PS"LPC) + Bo(‘ps““’c)] = ans;ch) (167)
n
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Consequently, the output is

/ - -
R(OY¥)=1=%+28 T g*s tpc) cos £ + s° TZnﬁ?s wc) (168)
S "‘W T, (O

and we see that not only does the system reject the seélf-product of the
interfering signal in the optimum Chebyshev fashion (T2n0934¥c)),
but the cross-product of the two signals is also rejected in the optimum
fashion (Tn0¥3J¥c)), This occurs only if the factor patterns AM) and
BW) are given by Equations (154) and (155) respectively. In this sense,
then, this factorization is the optimum one.

Finally we should note that since the pattern of any unifermly
spaced linear array can be represented as a polynomialjﬁ2 we can synthesize
a product pattern of any form by simply determining the zeros of the
pattern and distributing them equally between its two factor patterns$7’51,
The manner in which the distribution is made could be determined from
considerations of interference rejection as in the Chebyshev case.-
The patterns of two coincident arrays of n+l elements will each be a
polynomial of degree n. Their product pattern will be a polynomial of
degree 2n with 2n distinct zeros. On the other hand the power pattern
of a conventional array of n+l elements will also be a polynomial of
degree 2n but'will have only n distinct zeros. Consequently we can

say that the product pattern has twice as many degrees of freedom as the

conventional power pattern.
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8. MULTIPLE CROSS-CORRELATION

Having studied in some detail the .criossicorrelation of the signals of
two antennas we now will consider the effect of multiple cross-
correlation of the signals from an arbilrary number gf antennas. By
now it is well-known that when used for mapping the temperature distribution
of remote sources these systems are basically nonlinear.zo’ 3{ The output
of a four-antenna system, for example, will contain cross-product terms due
to sources in different directions even when their signals are mutually
incoherent. The explanation for the failure of such systems is simple.

The temperature distribution is a distribution of average power and as such,

i1s determined by a second moment of the probability distribution of the

field phasor V(t,u), i.e.

)

* %k *
T = L' i d
T(T,u,v) ‘rJ' T,u Vt-T,v p vt,u’vt-T,;1 dvt,u Vt—T,v (169)

*
where p [Vt u’vt-T v] 1s the joint probability distributicn of the field
) 3

from the source in the u direction at time t and the field from t™e source

in the v direction at time t-T, To emphasize the fact that t, T, u, and v are
essentially parameters in the above integral, .we Have:for expmple;}?tvgu?e‘thb
value of V(t,u) at time t and for the direction u. The integration, ‘of

L. *
course, isover-all values of £he corpiex amplitudes Vt u and Vt Ty
; T

Now by going to a higher order of cross~correlation we are no longer
dealing with second moments and hence by definition with temperature
brightness. All temperature information about the distribution is contained

in the mutual coherence function T(T,u,v). The information in the higher order
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correlations clearly concerns the higher order moments and hence can be

used to specify the joint probability distribution of the sources, e.g.,

v v v ¥
t-Tl,ul’ t-Tz,uz’ t'73,u3 PP vthn’un . Conversely, if the

p

probability distribution is kncwn, all of the moments can be determined

from it including the second or temperature moment. However, it will be

shown in Section 8.3 that the higher order moments of a gaussian distribution

are completely determined by the first and second moments.

8,1 A Multiple Cross-Correlation Antenna System

A diagram of the system,whereby the terminal voltages of N antennas
are cross-correlated, is shown in Figure 13. In Appendix B a detailed

analysis shows that the complex system output has an expected value of

RAlAz. AN(Tl’ Tar veees Ty Up Vg ceeey U
= 7™ (T Ty ee Ty voplip,lipy i) * ¥1‘T1’~-*¥;"‘2) }/3(73) 42(74)
L K By Ky By KL (170)
N XN 11 2" 2 3 3 4" 4 N
where
T(N)(Tlszf‘“*Tﬁ’ u, Uy, osuN) =

. * *
V(t-T Vv =T VOr-T_o,u_ ). ..., =T
Eq V( 1,ul) (t 2,uz) ( 3’ 3) vV (t “,ugg

with 7 and u being the time delay and beam direction of the kth antenna

whose patiern is Ak(u7 and filter response envelope is £ (t)

(171)
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It 1s clear from Equation (170) that a Fourier analysis of the output
will be simply a generalization to 2N dimensions of the analysis for the

case of a single cross~correlation, Thus the system output spectrum is

r (@, @openney WOy Xy X500, )
AA ... AL 2 A ER N
ey tMe o e x x) a () a(x) a,(x,)
1 22" N 127N T 272 3773 """
x v Vi Vi
g () F @) @)L Fl@) (172)

where

(6))]
Ty Ay Gy @ K, XY, t

1° N (wl’wz,__,, wN:axl’“: xN,),

ak(xk), and Fkouk),are the inverse Fourier transforms of

(N)
Ba...a O
1 n

Toreens Ty U N2 (TITZ,...,TN,ul,uz,..,uN),

l,-oc,

Ak(uk)’ and fk{T.)’

respectively,
*
Letting Q12,00N be the support of the system function al(xl) az(xz)__,,
Fx) b)) ¥ ¥ ¢
¥ (w . : L. ,
aN(xN 1 2( 2) ,,,,,,,, FN( N)’ we define the principal solution for

the Nth order correlation system as the Fourier transform of
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- rA]_“"AN( l,v$ ©y % .,XN)
t W ,..0., @, x ...xN)= s
A e 'A 1) J N) > 2 N % w *
10 -By (2m) i‘l @), Frwpa (). a(x)
€
100, X K€ Qog  y (173)
= 0, otherwise
Thus the principal solution is
o _
Ta . a T To o Tplply, ey ty) =
1 N
o0 o0
1 (N)
Nf f . f AL ,AN("’p g7 v+ Oy ¥pr Xpr v e ey Ky
- T T
edﬂﬂlTl w, gt eeees Ty =~ W) FXY U KUk, L X uN)
dwl. . .ddexl. - .ch%I (174)

which is a filtered version of the following Nth moment of the joint

probability distribution

oo o0 )
(N)
T (Tl’TZ"”’ T Yps u2,,,.,,uN) —f f f v, ul v, ,
Ere e, J [Sre o) 2
Yoy v av av av
B VT u? V'r uT T ..U u ‘

e,
19 gl Tty T TeUy | T Y

A
T+
23’

Uy

*
.V

TN,

(175)

u

N
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T =T =T = ,,,=T =20 = = U = ...
Note that for N even, 1 2 3 N and u1 uz 3
= uN = u we get
(176)
(M) N > N
T (0,0,...,0,u,u,....u) = E |vt,u ,vt,u | FAAN AN

which is the Nth moment of the probability distribution of the source in the
u direction.

It should be remarked that for the above results we have tacitly assumed
that N was vven., If N is odd the output in most practical cases will be
zero since most sources have even probability distributions (e,g., gaussian).
However, more general distr;butions.are possible and their odd moments
can be measured by using an oda aumber of aunteanas. In Appendix B we give
t he modification of the correlation system that will perform a correlation
of an odd number of signals,

8.2 Generalized Correlation Matrix

Just as it was shown in Chapter 6 that a cross-correlation of the voltages

of two antennas yilelds only a part of the available information from the

system, so in the generalized case it can be shown that the multiple

.,TN,ul,uZ,...,uN) is only one of NN

@

correlation output R

- LA l"TZ"'

17N
possible outputs, all of which are distinect functions of the delay and
scan variables., For example, we could form N distinct outputs from a
single antenna and obtain an N-dimensional cross-correlation just as we

obtained a two-dimensional cross-correlation of the signals from antenna A,

(see Chapter 6). By analogy with that output we could let R, , A (Tl,..
l.-.-l :79('
x

1 =

ocan- T ul,,.,,uN) he its N~dimensional counterpart. The 2

r N.’
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correlation matrix will alsc have counterpart and the typical element of this

generalized correlation "matrix” is

R -.,T T u.u u =
A A A A 3 gty Tyttt
kK £ m q 1’ 2 N1 2 N)

N Vik
T( )(Tl’Tz_"""‘, TN,ul,---,uN) * ¥k(Tl) fﬂ(Tz) ym(‘rs)...'

o
TaUn

-----

v Vik v V%
) Ak(ul) A_e (uz) Am(us) °°"°ch(uN) (177)

where each of the N indices, Kk, f, m,..., 4, assume values from 1 to N,

(T

Each element, R

T
AkAl"""Aq o N,ul‘,....,uN),o.u‘f the generalized

N

correlation matrix has a principal seclution, T( )_ (T ,...o,u ),
3 Ak....Aq 1 N

associated with it. We define the principal scolution of the Nth order

1’T2"'

correlation system as a whole to be the sum of these NN principal solutions,

i.e.,
N)er o T =
Ty T Ty Tty ety = 0o
N N N
(N) ' :
T = =z T 0T e, Ty Ujaaa, ) (178)
ee e e AA ,_A . k) PN 1’ ,"'N
k=g f=1 =1 KB 1
where
oM

T T T
S5 AREERLN (s Tgree s oty g o o5 Uy

is the Fourier transform of
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- YRS (@15 4050 %15 05 %y
k AkAﬂooMAq(ul’""UN-’xf"’XN) - NV g+ «
e a ces LA
2m F W) q(uN) e q(xN)
if (ul,,..,xN) € Q g o’
= 0, otherwise, ' (179)
and r (W, 00:. x. ) is the inverse Fourier transform of the output
Ak....Aq 1 N .
- i ~ti T
cross-correlation function RAk .,...Aq( TR ,uN).

8.3 Sources with Gaussian Statistics

If the sources have a gaussian joint probability distribution with =zero

4
means it can be shown5 that

: . .
-T - ~T -T
EQ V(=T ,u) ¥ (t=Ty,u) V(-T,u).. .., vV (t N’“N)f
N/2 . .
= X || E (V (t-Ti,ui) V*(t—Tj,u‘) , if N is even,
a.dp. i=1 [ 30
£ J
= 0, if N is odd, (180)

where a.d.p. means all distinct patrs and

T

v (t-Ti’ui) = V(t-Ti)ui),for i odd,

*
\' (t-Ti,ui),for i even (181)
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Thus the higher order moments of a gaussian distribution are all
expressible in terms of the sum of products of second order moments,

For example if N = 4 we can write

* *
- - T -T
E¢ V(t Tl,ul) Vv (t Tz,u2) v(t 3,us) vV (t 4,u4)

T(TZ—T u

T =T
1e U v T O

3)

+ T(T4~T1, u u4) T (T -T u u_)

1’ 2 37 "3 2

+ T'(--T1 + 73, U, u3) T'(—T2+T4, Uys u4) (182)

where T(T,u,v) is given by Equation (19) and

T? (T,u,v) = B V(t, w v (t—T)V) . (183)

If the .complex signals.:; have zero-mean statistically independent real

and imaginary components and the covariances of the components are the same,

then T*(T,u,v) = 0. Such signals represent circular complex gaussian.processa?
This result is simply a generalization of the well-known fact that if

the mean -and variance (first and second moments) of a gaussian random

variable are known, then all higher moments can be deduced from them*

We can infer that if such is the case no further information about the

source distribution is available in the higher order correlations.

Consequently, if we knew a priori that the sources had gaussian statistics

a single cross-correlation of the signals would be sufficient.

a

*See, for example, Davenport and Root4°3 pp. 146-147.




Conversely, if the measured higher order correlations are related to
the measured second order correlations in the manner indicated by
Equation (180), then one can infer that the source distribution has

gaussian statistics.

95
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9, THE APPLICATION OF CRCSS~-CORRELATION ANTENNA SYSTEMS TO RADAR

In this chapter it will be shown that antenna cross-correlation
techniques can be used to advantage in radar systems. In the radar
case, since oné is both trahsmitting: and: receiving signals, it is
possible to use two antennas for transmitting as well as two for re-
celving, four antennas in all, To distinguish the two transmitted
signals, one is shifted in frequency by the amount mf with w1<<<wb' The
recelving antenna system is designed to respond only to the cross-
product of these two signals which return after striking the targets.

Such a cross-correlation radar system has distinct advantages over
the conventional system., It will be shown that the directivity for a
given side lobe level can be increased by extending the Dolph-Chebyshev
synthesis technique to the composite pattern of the four antennas, Further-
more, since the system is designed to respond to the cross-product of the
two returning signals, it will be shown that the effect of remote active
noise sources is virtually eliminated in the time-averaged system output.

9.1 The Cross-Correlation Radar System

A diagram of the system is shown in Figure 14, Thete are four
antennas; two of which aré'used.fo? trangmitting:iAljand Aé); and -
two of which are used for receiving,(Blnnd Bz), The pulsed transmitter
signal is split in two equal parts and that part which is fed to antenna

Az is tagged with an additional frequency wl’ i,e,, the carrier frequency

is shifted from wo to wd+ w with w0>>> wl. This distinguishes the two

1’

signals which are transmitted by the antennas,
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After striking the target (or targets) the signals return and are
received by- the other pair of antennas, Bland Bz, In practice of
course the four antennas need not be physically separated, One could
use four coincident antennas which share the same aperture (see
Sccetion 9.2). The cruss-correlation of the terminaul voltages of these
antennas is, in principle, the same as with any correlation system,
except that the various filtershtuSEd must :be. wide~bdand in -
order to pass the video pulses of the rada:. A detailed analysis of
the processing is given in Appendix C,

The system output in the radar case is usually displayed on an
oscilloscope, Thus, a saw-tooth wave, synchronized with the pulse
repetition rate, is used to produce a repeating image on the 'scope,
The abscissa of the display is usually the range coordinate s, while
the vertical deflection, at each s, is proportional to the system
output and hence to the strength of the return from the target at that
range, In the appendix it is shown that for a target at the range r

and in direction v, the average deflection on the 'scope, as a function

of antenna beam direction u and range coordinate s, 1is

%k

For simplicity of analysis we have assumed in what follows that the
filters' frequency characteristics are uniform in the band

Iw-w0|< A W, We also have tacitly assumed the case of T =0,

98
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Jz, r/c
(184)

* *
E(s,u) = Po(s—rl Al(v-u)Bl(v—u)Az(v-u)BZ(v-u)e J

where

P (s) = | P(2 S/C)lz (185)

is equal to the absolute square of the video pulse, P(2s¢c), and Al(u)’

Az(u), Bl(u), and Bz(u) are the field strength patterns of the four

antennas,

Ja2w r/c ]
The phase factor € 1 (dependswon the target distance, but for all

targets within the maximum practical range rmax” one can choose W low

1

enough so that this factor is almost unity, Consequently, we can rewrite

Equation (184), to a good degree of approximation, as

e
R(s,w) = P_(s-1) t\l(v-u)sl(v-umz (v-w)B (v=u) } . (186)

Now with a conventional radar system, where quite often the signals

*

are transmitted and received on the same antenna , the analogous output is

D(s,u) = Po(s—r) | D(v-w) |4 (187)

*
A duplexer is used to isolate the transmitted and received pulses,
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where D{u) is the antenna's field strength pattern and we have assumed
that squate-law detection is used, Comparing Equations (186) and (187)
we see that mathematically, the latter is just a degenerate case of the

former which occurs when

Al(u) = Az(u) = Bl(u) = Bz(u) = D{u) . (188)

Clearly the cross-~correlation system 1s preferrable since its four
distinct patterns can be specified independently; in a sense, this system
has four times as many "'degrees of freedom'" as the conventional one, We
will now consider the implications of this in the design of optimum
Dolph=Chebyshev systems,

8.2 Optiwum Dolph-Chebyshev Design

We récall from Section 7,3 that the pattern of an optimum Dolph-

Chebyshev array is given by Equation'tlaiq shown below
D) = Tn(¢)-

However, when such an array is used for radar, the system output is

propertional to

D(s,¥) = P_(s-1) 'r: -4 (189)

where, by analogy with Equation (187), we have assumed a point target at
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range r and in the direction ¢o“ As a function of § - § the system
o]
output is a polynomial of degree 4n but is not the desired Chebyshev
i U -
polynomial of that degree, T4n('0 y).

Now let us consider the special case of the cross-correlation radar
system when the four antennas AI’ AZ’ Bl’ and B2 are in the form of
coincident linear arrays, This is indicated in Figure 15 where an
aperture weighting network is shown which takes the signals to and
from the elements of the array and combines them in a pfedetermined way

to produce the four distinct patterns A1(¢), AZ(LP)J Bl(¢), and B2(¢).

In particular, if we let

1 1 \3&

AW =T W) +{=+— | 2
1 n 2 T

1

1 1 1

AW =T @) +| = -—1 2
2 n 2 oz

(190}

1

1 -1 2
B, @) =T () - |2+ —=
1 n 2 o7

1

_ 11 2
Bz(‘l’) = Tn(\b) - —

then, except for a constant factor, we can show that the correlation

system output 1s
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R(s,$) = P_(s=1) T, @& - ¥) . (191)

This is the desired output since the system’s over—all pattern is given
by the Chebyshev polynomial of degree 4n.

A gquantitative analysis of the sidelobe 1level of this pattern and
of that of the conventional case, as given in Equation (189), shows
that if both have the same beamwidth measured to the first null, then

A . .
= 315 n > 9), the cross-correlation patternis

for large arrays (e.g., {
sidelobe level is about 7 or 8 db lower than that of the conventional

pattern, This is shown in Figure 16 where the sidelobe level improvement
in db is plotted as a function of the conventional pattern's sidelobe
level, also in db. The second curve, indicated by "Mattingly System",

is the improvement obtained when two distinet antennas are used, one for

transmitting and one for receiving, If the two patterqp are given by

AG) =T @) - =
42 (192)

B =T {4+ (193)

1
n Arz—_

then the system output, corresponding to Equations (189) and (191), is
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2
RM(S,¢) = Po(s-r) T2n(¢o- ) (194)

and the pattern is better than that of the conventional system in that its
sidelobes are lower by about 5 or 6 db as indicated in Figure 16, This
system was first proposed by R, L, Mattingly in 196053.

It can be concluded that the conventional radar antenna system
employing a Dolph-Chebyshev design is inadequate due to the multiplicative

effect of the transmitting and receiving patterns and of the square-law

detection. Thus, instead of the optimum Chebyshev palynomial T n(¢), one

4
4

obtains Tn(¢)_ It was shown that by properly selecting the four

individual patterns of the cross-correlation system, (Equation (190}),

one can s ynthesize the over-all pattern T4n(¢) which of course is

optimum in the sense mentioned above,

9.3 Noise Suppression

Since the transmitted and hence the received signals are in the

form of two distinct pulsc trains whose carrier frequencies differ by the fixed
amount wl’ the receiving section of the system has been designed to
respond to the cross-product of these signals (it therefore is a true
cross—correlation system),

On the other hand, given a background distribution of active noise
sources, the random noise due to this distribution, which is incident on
the receiving antennas, will in general not have such 2 dual nature,

noise distribution can be given matliemaiically by N(tiu) which gives the

field at the origin of the antenna coordinate system at time t due to the



106

noise source in the direction u, The terminal voltages of the two

antennas,due to the noise,can be written as NB (t) and NB (t)
1 2

where

NBk(t) = “J; N(t,u) Bk(u)du (195)

for k =1, 2,

3

Since the noise and signals are uncorrelated, the time-averaged

effect of cross—-products of noise and signals in the cross—-correlator

1

output will reduce to zero. In Appendix C it is shown that the “"self-
product" of the noilse in the output can be written as
* fjﬁlt
t) = N t) N :
no( ) B ( .) L (t) e . (196)

1 2

The average value of no(t) sampled at t = %5 + k To for N samples is

N=1 -J'u.)

i ; *

(s) =< Z N (12-E + k TN (’—2-%+ KT)e
-0 1 C o) B2 c o]

Ekr )] Qe
1l ¢ o

where we have changed variables from time t to range s, with t = 2s
c

This is proportional to the average vertical deflection of the oscilloscope
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at range s and in the appendix it is shown that the expected value of

this deflection is

2s N-1
sin Mo T -jwl(c. o T) (198)
= AN
E 7, n ) BB, Nsin®T,
where
%
NB'B"zE NB(%;S-+1<T)NB (?-S-+k'r) . (199)
1°2 1 ° B ¢ °
But
sin Nw. T
no,N(S) S l NBlBZI N sin w_ T (200)
and
1im 1lim sin N wlTO
S B R A (AP ETR R rerl Rl (201)
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except for wlTo = 2q @ , with q integral. Consequently, the time-averaged
output due to the noise is inversely proportional to the number of pulse
repetitions N,and in the limit as N approaches infinity,-the noise outpﬁt's
average valyue approaches zero, We can explain this by noting that the

system is designed to respond to a pair of signals with a fixed frequency

difference wl. Since the noise does not have this dual éature its effect
in the system output averages to zero, The special cases w1T0= 2q T need
not concern us since we can always design our system to avoid these values,
This result contrasts with the noise output of a conventional system
employing square-law detection. In such a situation the part of the

terminal voltage of the antenna which is due to the noise is

o0

Ny (1) = f N(t,u) D(u) du (202)

- 00

where D{u) is the antenna's field strength pattern., The low-frequency

output of the square-~law detector duc to this noise voltage is

2
nSL(t) =3 | ND(t) I (203)

This output has a positive average which we define as



e

F ] Il ——

sl

109

<nSL(t)> = ED - (204)

Consequently, in the presence of background noise the conventional system's
display will have a positive vertical deflection whose average value is
independent of range and is proportional to the average noise power ﬁD .
However, if the antenna 1s scanned this averaged noise output will vary
with scan angle {except in rhe rather unrealistic case when the noise
sources are uniformly distributed), On the other hand,the cross-
correlatich system cutput due to the noise sources has a time-average of

zero which in general 1s independent of both range and scan angle,.

9.4 Suppression of Jamming Signals

In some sjituations there might be,in addition to the target echoes,
a series of jamming pulses which are received by the antenna, They will
be from the directions of the jamming transmitter (or transmitters) and
of any targets which can reflect thisc jaaming pulsc. ifowords the
receiving antenna. If the carrier frequency wo and pulse repetition rate
TO of this interference is the same as that of the desired echoes, a
conventional system has no choice but to accept both the signal and the
Jamming noise,

The cross-correlation system differs from this since it is designed

to respond only to a pair of target echoes at frequencies woand wo v wl

Therefore unless the jamming signals are also in this dual form the time-

average of the 1nterfercence will approach zero as the number of pulse
repetitions increases The proof of this statement 1s essentially the same

as that fur Lbe syppression of random background noise of Section 9 3.
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10, THE MAPPING OF A TARGET DISTRIBUTION WITH A CROSS-CORRELATION RADAR SYSTEM

An arbitrary distribution of radar targets will generally produce
echoes which are partially coherent, In this chapter a general theory of
mapping such a target distribution is presented., One must use a cross-
correlation system the details of which are described in Chapter 9, The
regolution of the system is limited in two ways. First, the non-zero
beamwidths of the antenna patterns smooth the observed target distribution,
as the patterns are scanned, Second, due to the transmitted pulses not
being infinitety sharp, the measurement of the range of the targets will
also be a smoothed version nf the true range distribution,

Let us consider a system which uses just one aperture of length L,

Its four patterns,Al(u), A2(v), Bl(u), and BZ(V) are generated by the aperture
weighting network of Figure 15, We will assume that the radar pulses have

a2 spectrum of width Aw, Under these restrictions, an aperture of length L
and a bandwidth of AW, it is pertinent to ask what is the best one can do

in mapping -the target distribution, We will now show that we can obtain a

principal solution which is similar to the one described in Chapter 5 for

active sources,

10,1 Description of the Target Distribution

The targets are assumed to be located within the range of the system

2
and also in the far-field of the antennas (2L /A r-é‘rmax). We associate

with the target in the u direction and at range r, the complex number
jw r/c
g(t,u,r)e . Note that it is a function of time; this allows for

target scintillation, rotatlongand translation as time progresses, The
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onr!c
phase factor e 1s present becausec our reference point is located at
jw 1/c
. -~ 0
the cenrer of antenna aperture. Thus g(t,u,r)e represents the target

distribution as observed from the antenna.
»

10,2 System Output in the Presence of the Target Distribution

Let us suppose that we are 1interested in the amount of correlation be~
tween the echoes from the targets at {(u,?) and (v,r), If we beam one of
the transmitting antenna patterns 1in the u direction and the other in the
v direction and.xf we delay the set of pulses sent to the nearer target by
s/c = (£-r)- c seconds, then the two targets will be struck simultaneously
Dy the pulses, The delay of the pulses sent to the nearer target compen-
sates for the delay i1mposed by ihe extra distance s on the pulses sent to
the other target. ©Since the returning echoes also have a different distance
to travel, the output signals will also have a relative delay, i.e., the
signals from the more distant target is delayed in returning by an addi~
tional s/c seconds., Accordingly the output of the receiviig anteuna whose
pattern 1s beamed at the nearer target is delayed by the same relative
amount. This will 1nsure that the echoes from the two targets enter the

cross~correlator at the same time,

The two transmitted signals are

-y jw fre
Attef/e u ~-u) = X Plrfsc - 2kT } A tg -ule © (205}
1 1 K=o 0 11
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N-1 J [(wo +-w) r/c + wlt] .
A_(t+r/c, u-v) = Z P(t+r/c -2kT ) A_(u -v)e L\ ' (206)
2 k=0 o0 21

We have advanced one signal by r/c seconds and the other by {/c seconds,
The second signal is tagged with the constant phase modulation wl_ Note
that the pulse repetition rate is 2‘r0 where To = Zrmax/C. This permlts a
delay of one pulse relative to the other of as much as To with practically

no interference from preceding or'succeeding pulses,

After striking the targets the pulses return and are received by

antennas Bl and 32. Their two output voltages are
2900
©w o N-1 2(-1_ ) jTL (f-rl)
Bl(t,l,r, u,v) = f f ?@ P(t-: e - 2k‘i‘o)e‘ Al(ul-—u):+
- 00 = 00
w {+r=-2r
2y jr—-(—)(£+r—2r ) + W (th Ly
pedir 1 e 1 1 AL -v)
p e ZkTO)e 2 ‘¥
(1]
4-r 32 o'l
B, (ul-u) g(t + u,rde ¢ dudr (207)

(O C N | 1 1
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9o (4r-21,)

®© a0 N-l {+r 2r2 z
Bz(t,l,r, u,V) = J f p P(t+ P - "‘E:"" "2]{1"0)9 Al(uz-u) 3
-0 - oa k=0
2w . rer
2(r-r,) J [___0 (r-r,)+ @ (t+2-._........._..- 2 )] l
) - . fy — -
P(t+: . 2kfo)e c c Az\u2 v)i B2(u2 v)
2w
r-r2 J or2
- C s
g(t:-q., uﬁrz)e duzdr2 {208)

Note that the voltage Bl(t,l,r,u,v) has been advanced by the amount {/c
and B2(t,1,r, u,v) has been advanced by r/c., In Appendix D it is shown

that when these signals are cross-correlated with T=0, the system output

3

can be written as

R(Z,v,u,v) = Glo, £, r,u,v) * Xl (u)g;(v) B)B(r) (209)

where C () = A (wB, ) (210)
C,(v) = A (VB () (211)

P(r) = P(2r/c) (212)
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and

G(T,!,r,u,'v) =<g(t,u,1) g*(t-’l',v,r> (213)

is the mutual coherence function of the target distribution,

Equations (210) and (211) show that in effect we have two independent
radar systems each of which uses distinct patterns for transmitting and
receiving, One system beams its two-way pattern in the u direction and
the other system beams its pattern in the v direction, Equation (212)
indicates the role of the pulse shape i the mapping of the target distri-
bution, 'F(r—ro) = P[% (r-roq] 1s the response, as a function of range r,
to a point target at ro. The pulses P(t) in the radar system correspond
to the RF filter resgonse functions fA(t) and fB(t) in the cross-~
correlation receilving system described in Chapter 5,

10.3 Fourier Analysis of the System Output

The system output R({,r,u,v) is a smoothed version of the mutual
coherence function of the target distribution (evaluated at T=0), If we
take the 4-dimensional inverse Fourier transform of Equation (209), the

cenvolution theorem can be used to obtain

r€,M,x,y) = @02 go,E,n,xy) BE) P . 'y (210)

where rE,n,xy) , g(O,g,ﬂ,x,y)’ &), M), 4, (x), and c, (y) are the
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inverse Fourier transforms of R({,r,u,v), G(o,{,r,u,v), ilﬁa;i(r), ¢, ),

and Cé(v) respectively, Now since in Equation (210)
= (u)
Cl(u) Al(u) B,

we can again invoke the convolution theorem to obtain

& (x) = @m? a @ » b, () (215)

where al(x) and bl(x) are the inverse Fourier transforms of Al(u) and

Bl(u) regpectively, 1In a similar fashion we can write

c‘z(y) = (211')é a:2(y) * ha(y)' (2186)

cl {x) and c’z(y) can be thought of as the spatial frequency spectra of the
radar system's composite patterns Cl(u) and Cz(v)j respectively,
Since the four apertures coincide and are all of length L, it follows

that

cl(x)a 0, for |[x| > L,
(217)

¢, (y) & 0, for lyl > L.
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Thus the system has a spatial frequency response which is non-zero only

wirthin the region of the xy plane for which |x]| L Land |yl L L.
Similarly we define P€) as the spatial frequency spectrum of the

system's response in the radial direction £, This spectrum is related

to the temporal spectrum of the transmitted signal pulse, Thus if

P(t) = ——e p@w) e taw (218)
Jar J .
then _ c * c ng
P() = PG £)e'? ak (219)
a2{2m )
and
-— [ o [ o]
p €) = 3P (-2- E) . (220)

But we stipulated that p{(w) was practically zero for |w| > Aw (see page 110);

consequently we have

pE) & 0, for [E]> 3;&.. . (221)
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Thus the antenna system will reject those radial spatial frequencies which
. 2/W .
lie outside the interval |§|<S - Clearly it will also reject those
. 200
frequencies su hat || 7 =— .
q cies M ch t |1 p
It has been shown, therefore, that the correlation antenna system acts
as a low-pass filter of the spatial frequencies x and y which correspond to
the bearing directions u and v and it acts as & low-pase filter of the

spatial frequencies ﬁ and M which correspond to range coordinates £ and r.

The "aperture" of the system is a four-dimensional region centered at the

- (43]
origin and with boundaries given by the hyperplanes £ = :_23' »
4+ 240 +
M= —/], x= * L, y = - L. Furthermore, within this region the system
e c — e,

function weights the target spectrum in a more or less arbitrary fashion
which depends on the pattern and pulse spectra. The output spectrum is
" usually a distorted version of the target spectrum because of this.

However we can use Equation (214) to define

r(f.n,x,y)
r.zvr)zo;l(x)c;(y) E) T

I

go(o,ﬁ,n,x,y) for (5,1 x,v) €Q, (222)

= 0, otherwise,

—

where we have defined the four-dimensional point set Q to be that for which
% —_ -
|cl(x) cz(y) p(g) P (n)lqé 0. In our case it is the above-mentioned four-

dimensional wvolume with center at the origin. The Fourier transform of
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go(o,é,ﬂ,x,y) will be defined as the principal solution,Go(o,f,r,u,v).
The spatial frequency spectrum, go(o,g,ﬂ,x,y), is identical to that of the
required mutual coherence function G(o;4,r,u,v), but only over the region Q.

For points outside of Q it is, by definition, equal to zero. Consequently

Go(o,f,r,u,v) is a smoothed version of G(o,{,r,u,v) whose non-zero spatial

frequency components are identical to those of G(m,f,r,u v). In this sense

then, Go(o,f,r,u,v) is the best or principal sclution to the problem of
mapping a stationary target distribution with a finite antenna and a finite

bandwidth.



11, CONCLUSIONS

In this theeis we have corsidered the application of cross-correlation
techniques to linear antenna arrays. Probably the most importan' result of
this work was the demonstration that a-tw0~antenna cross-correlation syatem
can be used to measure a source distribution's mutual colserence function,
Since coherent and partially coherent signais are not uncommon in practice,
©,g., radar, multipath propagaiion;, and scattering from nearly objects, the
results obtained here should be of interest to the antenns engineer, The
demenstration that a conventional antenna system with square-law detection
is just a special case of the crosas~-correlation system makes 1t possible to
evaluate in a straightforward manner the relative merits of a conventilonal
and a cross-correlation system. An interesting result is that the analysis
of multiple correlation systems is quite simple (at least in theory) since
their outputs are ammenable tc Fourier analysis just as in the two-antenna
case, Finally,it is felt that the new cross-correlation radar system, in
spite of its involved circultry, has a number of advantages over the con-

venticnal system which should recommend it in some applications.
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APPENDIX A

THE CASE OF TWO-DIMENS IONAL SOURCE DISTRIBUTIONS AND PLANAR ANTENNAS

In the main body of this thesis we considered a one-dimensional source
distribution, More realistically, the direction of a remote radio source can
be specified as a point on a sphere of "infinite" radius with the antenna at
its center, This leads to a two-dimensional source distribution which can be
measured by a planar antenna system, We will now outline this generalization
from one to two dimensions, At the same time we will consider the practical
problem resulting from the directive properties of the elements of the array,
Then the problem of changing variables from the (u,v) domain to the (e,q» do-
main will be studied. Finally we will show that for electromagnetic fields the
Fourier transform relation between the far-field pattern and the aperture
distribution is a valid relation when the far electric fleld and the aperture
current density are considered, 7The relation between the far electric field
and the aperture electric field is not as simple,

A.1 The Output of a Planar Antenna Cross-Correlaticn Sysiem and the Effect of

Element Pattern

Let us consider a planar antenna located in the z = O plane, The total

pattern of the antenna can be written as

Alu,v) = E(u,v Aa (u,v) (A1)



-
—

where

u =PsinB cos® v = Psing sing (A.2)

and E(u,v) is the element pattern which as a function of u and v varies much
more slowly than the array pattern Aa(u,v), The terminal voltage of the array,

in the presence of the source distribution V(t,u,v), is

T ¥ ] t i 1 1 ?
A(t,u,v) = l. V(t,u,v ) E(u,v) Aa(u ~-u,v -v) du dv, (A.3)
o

Note that the array pattern can be scanned but the individual elements' pattern

cannot be scanned,

If we let

Vp(t,u,v) = V(t,u,v) E(u,v) (A.4)

then Equation (A,3) becomes
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1] 1 T t 1

?
A{t, u,v) = ‘.‘.\ﬁjt=u v o} Aa(u -u, v -v) du dv (A.5)
’ rd i E 2 F
JJ

= VE(t u,v) * Aa(u,v) (A.6)

From Equation (A.6) we see that the effect of the element pattern is to change
the source distribution as ''observed" by thc array. This change is given by
Equation (A,2). It can be easily shown that the mutfual coherence function%ﬁof

the "observed" source distribution is

: *
v = N T
Tg(T,u,,v ,u,,v,) <IE(t,ul,vl) v (t ,uz,v2> (A.7)

= E(ul’vl) E”(uz,vz) T(T’ul’vl’ v.) (A.8)

where T(T’ul’vl’uz’vz) is the true mutual coherence function,

The output from a second planar array can be written as

i
N

L%
~

B(t,u,v) = ¥ (t,u,v) * B (u,v) {.
> E Foe a
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and when the two output voltages are filtered and cross-correlated we obtain

v Vi
= * -
R(T U 5V, U,V ) = Ty (T, U,V U, vz) f,5(T) A(ulfvl) B (uz,vz) (A.10)

Equation (A,10) indicates that the cross-correlated output of the system is a

filtered version of TE(T’ul’Vl’uZ’v ) and not of the true mutual coherence

function T(T,u,,v, 2,v2),

The inverse Fourier transform of R(Tr uljv u2,v ) is

T, %), 515X, V) = L@, X, v, %,,5,) Cuple %, ¥y, %, 7,) (A.11)
where
( ) = F, (@) F. () ) b ( ) A1
w,xl,yl,xz,YZ; = Fy W B () a(xl,yl X2’y2 (A.12)
We define

(W, %, 5, %y, 3’2)
Y1r%geY,)

t ( P by f ¥ ; E
EAB Y 12V %p5 V) DR CEN 1R (%),¥ 1, %5590 € U (a13)

= 0 . otherwise,



128

The Fourier transform of t (w, x ) is the principal solution, But

EAB W *1: Y15 %90 ¥y

in view of Equation (A.8) we can write the principal soclution as

(A.14)

*
B(T W,V Y, ) = T(T, uy,vy,Y, v2) E(ul,vl) E (uz,vz) * Q(T,ul,vl,uz,vz)

EA 1

where, by analogy with Equation (117), Q(T,u Vi Uy, Vg ) is the Fourier trans-

172

form of a system function which is uniform within QAB’ the sysiem's "aperture",
Note that the element patterns are included in the convolution integral of
Equation (A,14) and strictly speaking cannot be separated from the desired

mutual coherence function T(T vz). However, in most cases the antenna

2 ul) VIJ uz)

elements are much smaller than the array itself and the element patterns are

slowly varying functions when compared to Q(T,u uz,v ). If this is the

1’

case we can write

(A.15)

(t,u,,v,,u_,v ) = E(u ’Vl) E*(uz,vz) T(T, uy ,V * Q(T, uy

EAB 1771272272 1 VpH 2 Hos ¥

to a good degree of approximation., Consequently we obtain
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(t,u ,v_,u v, )
T (T ) = EAB 1’ 1 2’ (A.16)

u.,v.,u_,v
AB" 71271272 2
E(ul’vl) E" (u2,v2)

as the principal solution corrected for the effect of element pattern. This
result is valid only in regions wherelE(u,v)'is non-zero,

A,2 The Mufual Coherence Function in the Angular Domain

In practice 1t is more meaningful to express the mutual coherence function
as a function of the angular variables 6 and ¢ rather than of u = 3sin@ cos¢

and v = Bsind sin®, Since T(T, YLy

12 Y% Vg } du dvlduzdv2 is the cross~-power incident on the

2_,,vz) is a power density funciion we
know that T(O,ul,
antenna system from the clementary regions located at ul,v ) and (u v, ).

Transforming this element of cross—power from the (u,v) to the (9,¢) domain,

we write

v ) du_dv_du_dv =

T
(0,u), vy, 1719 %Y,

T(0, ﬂsinelcosqajBsinelsin¢a,ﬁsin62cos¢%,ﬁsinezsinqa)

a(ul,vl,u ,vz)

2 . .
50,,9,,0,,9,) 1 %Y (A.17)
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where

B(ul,vl,uz,vz)

8(61’43562’¢E)

4 . :
= P coselcqsezslnelslne2 (A.18)

is the Jacobian of the transformation.
Now let us define the mutual coherence function in the angular domain
1
to be T(T,Gl,¢&,92,¢§). The cross=-power incident on the system from the

elementary regions located at (Bl,qa) and (62,¢§) is

1
T (0, el’gﬁ’ez’¢5) sinelsinez dqa d¢% del dez ‘ (A.19)

If we equate this wiih the cross-~power given by Equation (A,L7) we obtain

' 4 : , . ) .
T (9, 61,¢a,62,¢3) =f3 cos9, cosf,,, T(Oj651nalcos¢a,351n9151n¢3,ﬁ51nezcos¢%,

Bsinezsin¢g) (A.20)

as the relation between the mutual coherence functions in the (u,v) and
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(e,¢D domains,

This result also applies when we consider the source distribution to

be weighted by the antenna element pattern,

2 . . s
TE(T’91’¢3’62’45) = f coselcosez E 951nelcos¢31651n61a1nqﬁ

* . - . 0] .
E Bsin92@03¢é,ﬁsinezsin¢é T(T,B51n91c05¢%5slnelsln¢33ﬁ51nezcos¢5,

i ing A2l
ﬁ51n8251n,2) ( )
and if the elemcnt patierns are siowly varying we can write
! X (A
T o (T,0.,0,0,_.¢.) A.22)
- (7.0 .0 .0..0) = EAB " 771271772 T2’ .
AB " *F1rT10 V20Tl T

*
. o s . . i , . .
E{ﬁslnelcosl;olﬁ,p~ ,_n9151n(,01) E (651n62c05 (pz_,[islnezs Jn(Pz)

A.3 Fourier Analysis for Electromagnetic Fields

Let us assume that the electromagnetic field is known on the planec

Zz = o, This plane can be thought of as the extended aperture of an antenna,
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Any electromagnetic field in the plane can be decomposed as the sum uf two
modes, the TE and TM modes, each of which can be represented by a scalar
function, In particular let us consider the TE mode and a field which
varies only in the x direction. This is analogous to the one-dimensional

apertures which were considered in the thesis. The electric component is

E(x,2z) = 9 Ey(x,z) . (A.23)

The scalar field Ey(x,o) in the aperture plane has as Fourier transform
~s
Ey(ﬁsine), which represents a spectrum of plane waves, Considering just

one of these plane waves we can wrilte

A~ 'Jﬁ°; -j[Psing x + PcosO z]
y

E (sing) e =% 'Ey(ﬂsine) e (A.24)

which represents the field at any point (x,z) due to the plane wave., The
total field 1s the integral of all such plane waves pver all possible

directions,
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8

~ -j[Bsin® x + Pcosp z]
Ey(x,z) = Ey(ﬁsine) e dpsing, (A,25)

5

The field at any point can be recovered from its plane wave expansion on
the plane z = o,

Eguivalent Current Sheet

If we again consider the plane wave given by Equation (A, 24) we can use

Maxwell’s Equation

ﬁkx,z) = - curl E{x,z) (A_26)
w
to write
fa¥) o) ~s
H (Bsing) = Pcosd E(Bsing) (A, 27)
X jubp

as the % component of the plane wave's magnetic field, But it also follows

from Maxwell's Equatiosns that

J (x) (A.28)
y

00 =

H (x,0) =
5
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where J {x) 1is the density function of an equivalent sheet cf electric
y
current flowing ir the z = o plane. Taking Fourier transforms of both

sides of Equation (A ,28) gives

%;(ssine) =

i

3;(ﬁsine) (A.29)

and in view of Equatioun (A.27) we can write

Y (Bsing) = '%%5529 ¥ Bsing). (A.30)
y n

Substituting this result into Equation (A,25) gives

E (x,z) = -onp
y

2

~j[Bsingd x + Pcozh z]de

3;(Bsin6) e (A.31)

flmy 8

which represents the electric field at any point in terms of the spectrum

of the current density in the aperture plane,



Far-Field Approximation

Let us rewrite Equation (A,31) as

r iBr  cos (-8 )
E (r.,5) ___-onp [ 3 Psind) e °© ° de
y oo —5 y
2 o
00
where

-1
2
r = x2 + z2 and B = tan (5) .
o o) z
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(A.32)

If the observation point (ro’eo) is in the far-field r is very large and the

integral on the right side of Equation (A,32) can be evaluated by the method

of stationary phase., We can write

Br

Br P =g -2
E (r ,0)% - %% J @sing ) e N
y ©o o 2 y o
%)
Jwpu 7
o 2) ~
N o H o (ﬁro) ..'I_y (ﬁsineo)

2
6 - 92)

(A 33)
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(2) .
where Hé )iﬁrﬁ} is the Hankel funcrion of rhe second kind, Thus we see

that the far eleci.ric field at a fixed radius T from the origin 1s propor-

tional to the Fourier transform >f 1he current density function in the

aperture with the rransform varilables being Psing and x. This is not the
case for the relation between the aperture electric field and the far
electric field. Starting wi*h Equarion {A_25) we can show that in the far

field

E (r,8) 27 HP) @r ) Beoso_ NY Bsin8 ) . (A.34)

Note the additional factor 03563



Redimi

|

137

APPENDIX B

OUTPUT OF THE MULTIPLE CROSS-CCRRELATION SYSTEM

The signal from each of the N antennas is passed through an RF filter
and delayed a certain amount. Thus the signal from the kth antenna after
the filtering and the delay is

- T
o k

r e = -T g B
v (=T, u) = A (e k,uk) € (B.1)

where

1t

Ak(t’uk) V(t—tl,u) Ak(U*uk)du fk(tl)dtl {B.2)

C Yy g

I

v
V(t,u) * £ () A ().

1]

As is shown in Figure 13, the signal from .the first antenna is fed into a
frequency shifter (phase modulator) which increases the carrier frequency

from wo to uo + ul with wo >>> ul. Thus the signal can be written as

=J (uo'fl—ult)
v (£-7 w = =T Be-
.1( l’uf 1) Al(t ljul}e . (B-3)

This signal is fed into a mixer (a squaring device) along with the signal

from antenna 2, Vz(t-T u2), There is a component in the mixer output

2)

at frequency ul and it can be written as

*
T T u,) = -7 -T ) a "
plz(t' k] 2"‘1]’ 2 Al(t 11u1) Az(t 2,]—‘-21 =4 e (B 4)
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In a similar fashion the signal from antenna 3 1s passed through a frequency
shifting device with modulation frequency u3 and after 1t is mixed with
the signal from antenna 4 the mixer outpui contains a zignal whose carrier

is at fregquency Wy << Wy It is given by

. 'on(Ts—Tﬁ) Ju,t
TT - -7 - * 5
p34(t, 3,4,u3,u4) As(t 3,u3) A4(t 4,u4} e e (B--5)

As can be seen in Figure 13 the signals of each adjacent pair of antennas are
correlated in this manner and each mixer output has a distinct carrier
frequency Wy with k = 1,3,5,...,N-1.

%
If, after passing through a band-pass filter, each of these single

with p

correlation outputs is mixed with the adjacent one, i.e., p12 540

P56

we can write the expression for the signal in the output at frequency

with.;ﬁs, etc., and the process continued until a single output results,

wl + us + “.+UN_3 + wN~1 as follows

T Ty © v =
Proz,...n (b7 Ty, e,y

* *
t—T ! A -T A —-T - t—T L R I )
Al( 1 ul) 2(t 29u2) 3(t 3,u3) A4( 4,114)
(8.86)
R N T T b . t
AL (=T . .u. ) AN(t=-T _ue J%”o‘ 17 2% 37 4t MR +wN—1]al.
TTUUN-1 N-1""N-1" 7N NN J

Then if the output 1s fed 1nto a synchronous de:ector along with a reference

signal at frequency w, -w_+ the detector output before time-averaging

1793 N1

will be the following real voltage

*¥For simplicity of analysis we assume that the filter has no effect on the
output signals 1n the narrow band 'w-w | £ & w and completely rejects the
double frequency RF outpuf signals and the signals in the low frequency
band lwl & O w.
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*
) T,T T T ces = -T A _(t-T _,u
RA1A2...AN(t’ 1T T Ty U Ugseenly) = RyCA (8T u) A (T, up)
] ~jw (T =T 4T _—...-T )
* * o 1 2 3 N
=T i -7 PR -T °e Bs7
Agt=To uz) A (6=T,, w) . AL(t=T o, ul) (B=7)
juo(t-T )
If one of the signals, say Al(t—Tful)e , is taken in phase quadrature
then the above result. becomes
_n *
T .T T = -T T e
RA1A2°'AN(t’ 12 Tor s N’ul""’uN) Im Al(t l’ul) Az(t 2,u2)
—jw [T -T 4T _—-...-T ]
*
AT, ud e © 1 23 ¥, (B+8)
Thus we define
RA A A (t T T T ) -
1 2“‘ N EI | 2}°") Nlu-ll"'JuN =
jo [T =T +,..~-T.]_ - -’
o1l 2 N[ﬁ' j Ry T ) (8.9)
e (t,7 ,4.,u.) +J A (t,T ,...,u v
Al"AN 3 Tys ety Alv, N 1 N

as the complex system output for the case of N correlations. Using
Equation (B.2) we can write the expected value of the time-average of this

output as

B B B o o )
R I
AA AT LT u ) = E f ff f [,...afv(t-"'l-tl,ul)-
- B 0 4] 0

* ? § *
. -T -t (t-T - Fo(E-T —
vV (t 2 tz,uz) v(t 3 t3) 3 PPN

A (U=u.) A (ueu ). . A (dsu) £.{El) £o(t) £ (e 3dd du. . .du.d dj (B-10)
10U A trugde e AgRugiy) TNt Bty gl du du, duydt tuj ”
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B B S IS)
= ff f T(N)("r +t T +t2’°""TN+tN’ ui, ué,..., 4'1:{}
-8 -B 0 0
X 4 b i \/(* Yy £ (t.) f*(t ) f*(t Ydu? du? dt dt(B.ll)
Al(ul-ul) A2(u2-u2)°"' N(uN—uN) 1t 2 AL ul.‘. uy REL L

where

(N)

* *
T (Tl,‘rz,.,.,"rN,ul,,“,uN) = E V(t-'rl,ul) \4 (t—Tz,uz)....V (t-T,ud  (B-12)

NN
Since the source distribution is stationary, this function is independent
of the exact time t at which the evaluation occurs. Inspection of the

integrand of Equation (B-~11) will reveal that we can write

(N)
R . T T . ..,T .. = T T e, T U,
AA...ANJ( 1 Tgree Tty =TT T, Tty e 5y
12
X, ks cu )k Wy Yoy eyt ey (8
* [Al(ul) 2(u2 3(u3).ou. N(UN 1(-l ;2( o) Iy 3)0.,., N( N) +13)

which 1is the convolution of T(N)(Tl,Tz,.,.,TN,ul,.,.,uN)bthéreverﬂeofthesmﬂem
(T (T )2 (T ) En(T ).
-1 N N

* *
function Al(ul) Az(uz),oc,AN(uN) f o (T, (7,

1

In the above derivation we have assumed that N was even. In most
practical cases this will be the only pertinent situation since most of
the source distributions will have even probability distributions, e.g_,
gaussian, and hence all odd moments will be zero. However, this will not

always be the case and in order to measure the odd momeuls of a distribution

we must use an odd number of antennas The process is the same as for an
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even number except that the last antenna signal is shifted in frequency by
riuo rather than by uNo It is then mixea directly with the output
signal resulting from the miaing of the signals from antennas N-2 and
N-1. The rest of the process is the same as before.
Finally we note that the two-antenna system is just a special case
of the above, The output of the single mixer is fed immediately into

the synchronous detector along with a signal at frequency ul. The output

i T T i T = T =T = . = =
is RA1A2( l,z,ul,uz) and if we let T, o, 5 , U o= U, u, =, Al = A,
and A2 = B, we have
R (T u,u) =R (T,u,v) (B-.14)
A 1’ 22717 2 AB" 77 ¢

12
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APPENDIX C

CORRELATION RADAR SYSTEM

A diagram of the system is shown in Figure 14, The pulsed trans-
mitter signal is divided into two equal parts, one of which is shifted
in frequency from wo to wo + wl , with wo > wl . This slight change
in frequency can be accomplished by inserting dn the feed line & rotary
phase shifter - whose phase change is at the constant rate of ul radians
per second,

These two distinct signals are then fed to antennas Al and A2 and

the far fields of the two antennas can be written as

N~1 3
A(t,v) = Z P(t-k T )A (V) (C.1)
k=0
N-1 jwlt
Az(t,v,wl) = Z P(t-k TO) Az(v}e (c.2)

k=0

where P(t) is the video pulse, and To is the pulse repetition period, We
have assumed that the transmitter 1s turned on at t = 0 and the pulse is
repeated N-1 times, Al(v) and A_(v) are the far-field patterns of

antennas Al and A2 respectively. The absence of RF filters in the



feed lines of the transmitting and receiving antennas of Figure 14 is due
to our assuming, for simplicity, ;hat tke actual filters have uniform
pass-bands and hence pass the signals unaltered.

Now for simplicity let us consider the case of a single target in
the v direction and at a range r, The returning echoes are received by

the other two antennas, B, and Bz.. The terminal voltage of antenna B1

1

can be written as

(C.3)

N-1 ar = jwl(t— -2551 _jwo(t- %3)
bl(t) = P(t-‘—c- - k TO)El(v) + Az(v)e 1(v)e

k=0

where ¢ 1s the velocity of light in the

2r
Note the time delay term — ,
c

medium, This is the time required for the pulses to reach the target and
after reflection to return to the antenna. It is common practice to

choose the pulse repetition period To so that if the maximum practical

target distance is roax’ then To = = max . Thus all echoes due to one
pulse will have returned before the gucceeding pulse is transmitted, This
avoids any ambiguity in range measurement, If for the present we assume
that the target is stationary, each pulse will return at the same time
relative to its corresponding transmitted pulse, Consequently, we can,
for simplicity of notation, consider the time interval 0L t< To knowing
that the returns of succeeding intervals will be ident:cal to the first

whose response, with the carrier frequency factor suppressed, can be

written as
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Jw (t-tr) -jw t
Bl(t) = P(t—tr) E\l(v) + Az(v)e ]Bl(v)e (C.4)
for 0\< t-s TO 3
and where we have let
too= 25, (C.5)
r c
The vol tage of antenna B2 is
J‘wl (t-t.')] -jw_t
= -t - B
Bz(t) P(t tr) [Al(v) + Az(v)e 2(v)e (C.6)

for 0L t< T, , where Bz(v) is the receiving field strength pattern
of antenna Bz.

Now in order to distinguish . the two output voltages, bl(t) is shifted
in frequency; it is fed into 2 square-law device along with a second signal

at frequency @ The frequency wz is chosen to be much larger than the RMS

X
spectral width, A®, of the pulse P(t), while wl is very much smaller., For
W
example, if the operating frequency, E% , of the radar is 10 Gc, and the

pulses are one miciosecoand ir. length then é%g = 1 Mc, and we could lect
gl = .lkc, and fg =1 Ge, A fTilter is loc;ted at the frequency shifter's
27 27

output which passes only the signal at the difference frequency, uo— wz.
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This can be written as

jw (t-t.l;)] J[wb(t-t.r-)- wzt]

B (8) = P(t-t) E\l(v) Ay (e B, (Ve R

This voltage, along with Bz(t), is fed into a mixer which forms the square

of their sum, i,e,,

- 2
[Re(Bl(t) . Bz(t))] -

J'wl(t-ta,;) jlw (t-t;)-wzt]l
[R P(t-t.) [A (v) + A (v)e ]a (vde © F
e r 1 2 1

(C.8)

Jw (t-t;')] Jw (t-t) 1
1 r 0 r
+ Re P(t-t}) [Al(v) + Az(v)e Bz(v)e HE

If an RF filter, whose pussband 1s centered at frequency wz, is located

at the mixefﬁoutput it will pass the following RF signal
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cle) = |P(t-t) ]2 [IA W12+ 1A )2
r 1 2

~jw_t

-jw_. (t=-t3) Jo. (t-%2)
* L r]al(v)az*(v)e 2, (.9

+ Al(v)A;(v)e + Al(v) Az(v)e

If this signal is fed intec a synchronous (phase) detector along with a
reference voltage =t frequency wz + wl) the detector output can be

written as

-

t
2 jwl T let jzwl ('— -L—E)
y(t) = [P(t-g )" ¢ C (Ve Ty c (Ve + Cy(v)e (C.10)

where

~ * *
Co(w = Al(V) Bl(v) Az(v) BZ(V)

2 , *
c, (v = [1a, 7+ }A2<v),2 B, (v) Bl (v) e.11)

CZ(V) = AI(V) B (v) Az(v) B;(v)

1
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As mentioned earlier, this result is valid for 0 L t < T The

output for any value of t can be written

N-1 2 »letr Jw_t
!&(t) = Z |P(t-t;-k TO)T [CO(V)e + Cl(v)
k=0
i"tr )
32w1(t—~ e ) (C.12)
+ CZ(V)e

In practice, a linear saw-tooth voltage wave, synchronized with the
pulse repetition rate, is often used to produce a visual display of this
output on an oscilloscope. Thus, the abscissa of the display is the
range coordinate s and the vertical defkeétion is proportional to the
strength of the target return. For g'gitven range s this deflection is

2s

given by the values of rN(t) sampled at t = k To + :? . The average

value of this deflection after N-1 repetitions of the pulse is

1 N=-1 ;i(.ul t.r Jm (.E—- + kT )
R.(8) == P (s-r) = C (ve + C. (v)e el
N N o K=o '+ 1

j20 (3.?.”,,_1;)
1\ ¢ o r
+ Cz(v)e
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.
f- J'wlt sin (N wl-éq) le(§;—1 T0+ Z,i‘;)
= P (s-r) ¢C (W) e " T4 (v)- __='e :
° 1.0 1w sincnblg)
2

sin (N W T ) Jw [(N-—l)'l' + M]

c
—_ C.1
+ Cz(v) T Sm(w - ) (€.13)
where, in changing variables from t to s, we have redefined the pulse
function as
P (s)=!P (-2—5-)!2 . (C.14)
o <

It will be shown later that i1t is to our advantage to require that

w]"f‘ﬁ be small, say 0.5 radians or less. If this is the case,

sin wl‘r o~ (011'0 , and the absolute value of the second and third terms of
o]

Equation (C.13) can be written as

.
sin|N w o) : g Y
[ cg) o [ o 2

P (s-r) |C (V) -~
° * N sin( ___g\,
2

(C.15)

sin Nw 1 jw  [(v1)7 4 ilf—i—z—’EJ P (s-r) |2ic, (") lc_(v)]
13 o 1 L [} c < o) 1 4 2

N Sll’l w T NWT N N

1l o 1 0

+C(v)
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Note ‘thatas N increases, the absolute value at these terms approaches zero

and in the limit Equation (C.13) becomes

jwlt
lim R, (s) = P_(s-r) C_(v)e d (C.18)
N —» 60 (o] o]
or
* * J.ml.tr e
R(s) = P (s-r) A_(v) B_(v) A_{v) B_.(v) e . (C.17)
o 1 1 2 2

A not uncommon case is when all the patterns are real, and

one can write the actual real system cutput as

|

(2wlr
)= P {s~r) A {v) R (v) A_(v) N (v . C.18
R{s) P {s~1) 1‘V) ol ) of ) cos < ) ( )

2

But if 2w1r/0==mﬁithe output is zero, a rather undesirable result, The
Cco0Ss (2wlr/¢ )} factor is due fo the time delay 2r/c between the transmitted
pulse and that which is received., As a consequence the reference signal
in the synchronous detector leads the desired signal by Zwlr/c radians.

This, in general, will cause a reduction in the system output and for real
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patterns it is given by cos (zwlr/c), Now if we select wlso that wlTnz.s
radiang, then the reduction in the system output will bhe to{%05|(.55} 100
= 88% of the maximum possible sutput. This will occur for targets at
the range limit rmax, For targets which are closer, the reduction is less,
A better and still rather simple scheme would be to set the reference
signal with a delay so that it is exactly in phase with the response from
targets in the center of the range at rmax/Z, Then it would lead the
responses from rmax and lag the responseg from r=0,by 0,25 vadians, The
reduction in the output in these cases would be to 96.8% of the maximum
possible value, Thus we see that by keeping the phase modulation
freguency low enough we can, to a reasonable approximation, obiain the
following average response at the position s on the oscillcscope’s range

coordinate

* - (C.192
R(s) = Po(s—r) Al(v) Az(v) BI(V) Bz(v)

However 1t can be shown that by introducing a continuously varying
phase compensation in the reference voltage of the synchronous detector

one can completely remove the phase factor Zwlr/c for all values of r, Itcan

also be shown that ir this case wlTo need not be restricted to smail values

and there is a certain value of w_T7T which will cause the

17, hamely 4 u/3

b4
other two terms of the detector vuiput to average cut to zero at a maximum
rate. This scheme, however, is rather complicated and i1t might have no

significant advantage over the one mentioned above in many practical sifn-

ations.
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For this simpler system it is clear that w , 7 , and r are not
1’ o max

>

independent, 1In usual practice one is given the value of rmax. €.g.,

150 kilometers, From this, one can use the delay formulas to obtain

T = . (0.20)

In this case To = 2(150)/300,000 = 10"3 seconds, The pulses are repeated

every millisecond, Finally, we require that w ‘I'o = .5; hence in this case

1

-3 . .
wl= .5/10 = 500 radians per second which is approximately 80 cps,.
If, as is commonly - done, the composite patterans of the antenna

system are scanned, then for a scan direction u, we can write the system

output, as a fuaction of u and s, as follows

R(s,u) = P_(s=1) A (v=u) Aj(v-u) B (v-u) Bjtv-u), (c.21)

This is the system response to a peint target in the v direction and at:

range r,

SUPPRESSION CF BACKGROUND NOISE

Let us suppose that in addition to the distribution of passive targets

there is a background disirihutinn of inderesdent = gative ncize rovreos
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If we assume that the antenna has an RF filter which passes only a narrow
band of frequencies centered at wo we can give the following description

of the noise as a function of time and direction

w t
J 0

n(t,u) = N(t,u)e (C.22)

where N(t,u) 1s the narrow band complex noise phasor at time t due to the
noise source in the u direction, It is a random function of time and we
assume it is stationary; its statlstical properties are invariant under
a shift of the time origin,

The system output will contain components due to the target
reflections alone (signals), the noise alone; and cross-products of the
reflections and the noise, But since the noise 1s random and the reflections
are not, these cross-~products terms will average out to zero. It remains
to investigate the output components due to the noise alone, The two

output noise voltages are

o0

. J(wo- wz)t
ng (t) = jr N(t,u) Bl(u)due (C.23)
1 = 00
Jw - w3t
=N (£) e © 2 {C.24)
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where
=]
NB {t) = f N(t,u) Bl (uw)du , (C.25)
1 - 0
and
ju t
)
ng (t) = Ny (t)e , (C.26)
2 2
where
<0
Ny (t) (t,u) B,(u)du (C.27)
2 - 00

The mixer forms the product cf the sum of these two voltages and the filter

at the mixer output passes the component at frequency wz. It is given by

1 ~Jo,t

* 2
n (t) =3 [NB () N (t)] e . (c.28)
2 1 2

The output of the synchronous detector corresponding to this voltage is

propouitivnal to
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. -jw. t
* 1
n (t) = N_ (t) N, (t) e . (C.29)
0 B B

1 2

The average value of this output, sampled at t = 2s/¢ + k To’

for N samples, is given by

25 .
N-1 Jw (——- kT )
1 * 2 kT 1 .
n.y) =% T N (gf +kT )NB, (—f ¥ ) °/ . (c.30)
©) k=0 1 2

This is proportional to the oscilloscope's average vertical deflection at
the position s of the horizontal range coordinate, Since the noise is
stationary, and essentially uncorrelated between pulses, we can write the

expected value of n _(s) as
o, N

=

o]

~~

w

~

n
2
H
]

=

! 2 i

Ne B ciw, 282 Na1l -k T

lo

= N -
Rle N =sin wiTﬁ

sin N w_T -jwl (%? + K- ﬂ;
e (C.31)



155

where

2 *
BB, = E (N (-ii + k T) N (3?- + k 1-) (C.32)
1 2 \C

is the mathematical expectation or statistical average of NB (—258- + k T)

1
* 12
NB (-—f— + Kk T) s and due to stationarity, is independent of k. From
2

Equation (C.31) we can write

\
sin{N wl"r}
E no.N(S) < INB B [ T (.33)
F l 2 l
and except when w T = 2q, for integral q, we have
lim lim -'sin(N w]'r)
E 1 o i L
N—ow no)N(S) S N —» o0 i NB‘le,i N sin wl? (0.34)
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APPENDIX D

RADAR MAPPING OF A TARGET DISTRIBUTION

If the output voltage Bl{t,f_r]u;v); as given by Equation (207) of
Chapter 10, is first shifted in frequency to \'-00 - wz, and then mixed wilh
Bz(t,f,r,u,v) as given by Equation (208), the output of the band-pass

filter (at frequency wz) can be written as

3 . . N-1 N-1
< -
m(t,4,r,u,v) ..ffAl(ul-u) Bl(ul-u) AZ(u2 v) Bz(u2 v) z
k=0 i=0o
Yo %o > G
2w zwl
4l =L |pop| = —Z(p-
, . \ 3 = [L r] = (r-r ) ,ﬂfrl
Tt =~ - b - 2t~ -21 ———
P(t c(l rl) 2kTD, P (t C(r rz) 21To)e g(t+ " Jul,rl)
-F (W +w )t
* r-r2 3« 1 2)
g (t+ s uz,rz)dulduzdrldrze (D.1)

Note that the usual correlation delay T, has not been introduced. Con-
sequently the system output will be the cross-correlation of the two
antenna voltages evaluated at T = o, We have also assumed that the RF
filters of the system are capaitle of passing the video pulses of the

radar with no distortion, iowever even with these simplifications the
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mathematical analysis is still quite involved,

Letting the reference voltage be

2wl rmax 1
—J[(w1+w2)t + — (r- 5 )J

c
v EF(t) = e D.2)

the output of the synchronous detector becomes

0 0 0
- v N-1 N-1 5
RN(t,f,r,u,v) (u—u ) C (v-ulj z Z P t+ = (Inrl)-ZRTO

k=o i=o0
~0 %0 Zo0 %oo
(D.3)
20
* 9 J""C' [1 r] f-r * r—r?

P {t+ =z (r—rz)-ZiTo e g(t+-1r—,ulrl)g (t+v7?—,u2r2)d;ldr2du du

where we have defined

Cl(u) = Al (u) B} (u) (D.4)
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Cg(v) = Ag(v) Bz(v) . (D.5)

There are other terms in the output, just as in the single target case
(see Equation C.IO), but since they all have a zero time-average we have,
for simplicity of presentation, omilied them in the above output
expression, Since the pulses are essentially non-overlapping {orthogonal)

we can write the output as

50 0 2w 7
v v N-1 jul (aa9)
T — C
= * - -
Ryls,4,r,u v) = € (u)C,(v) i’ J‘J‘ P(s+£ r 2krmax)e
0 o
(D.6)
2w T~
J 2 (s+r)
-15* -r =-Zkr e °© 253;?-!—1' u,r -r* 25+r=1 v, dr_dr
s+r T 48 hax g( 1 1)’ ( 27 72 2) 1 2
c c

where s = ct/2.

For a target at a given range, for example r we will ascume that

1,
its reflection coefficiernt, g(t,u, rl), is slowly varying compared to the

pulse that strikes it, This uccurs when
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I
(=]

s = fI-r_=~2kr (D.7)
1 m

ax

or

r, = s+f - 2kr . (D.8)
1 max

Similarly the pulse strikes the relatively unchanging target al range r

2
when
— - - Do)
r, =8 4+ r 2krmax . L.
Substituting these results into Equation (D.,6) gilves
N 00 €0
w¥wm 3z [[ 5] )
R (s, 2, r,u,v)= C (u) C_(v) * P [ stf- ~2kr
N2 1 2 ax j
k=o J
[ |
0 0
(D.10)
2w
_ 3-—-39(2-:'){ .
Bls+rr -2kr |
(s+r r, 2<rm&xl e g f:fkr -_,u,rl)g (s+2kr v rz)drldr




160

n
O (-
S rjv e N:z:l Blsth -2k )—ﬁ*( 2k )}
= e lcl(u) CZ(V) —r Pjls+f~ I‘max - S+I-2 I‘max J

*
. _ -
g(s+2krmax,u,s+1 2krmaX) g (s+2krmax,V,S+r 2krmax_) . (D.11)
c < -

Letting the output be sampled at s = Zkrmax (L,e,, at t = ZkTo)’ the

average oulput 1s gilver by

, AW e
N=1 J__2{-r)

- 1 3 Vi — —k
Ry(t,r,u,v) =% Z e © € () €,(v) PU) P (r) *
k=¢
4 * r
g( krmax u;l) g (4krmax’ v, ) ] (D.12)
c e

Now if the targe® function g({,u,r) satisfies the ergodic hypothesis,

then we have

— Pr—— PE— 4 X
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*
Eqeg(t,u, ) g (t-7,v,r) =G (T,4,r,u,v) {D.13)
where G(T,!,r, u,v) is the mutual coherence function of the target
distribution.
The expected value of the system output after ¥ pulses i
-
N 31—
B4 (0 ) L oz c & () & BU) T
N Ty, v = F e 1 u Z(V b o
k=0
* G (o,f,r,u,v) (D,.14)
or
2w -
— j co (!"!‘) Vi - ;i!
R(Z,r,u,vy =e C () C,(v) PUI P (x) * Glo,2,r,u,v) . (D.15)
R .'Zwo'_ .
-3 = (L-r)
Multiplying both sides of the above equation by e gives



.1;2(‘) r
-.d‘___g nr)
RU,r,u,v) =e ° = R ,r,uv)

= gl(u) g;(V) PU) 'l-'-;*(r) *G (o,2,r,u,v)

22782

as the required system output,
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(D,18)

(D.17)
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